single-gamic.c

You can download the current version of Algol 68 Genie and its documentation here.

   1 //! @file single-gamic.c
   2 //! @author J. Marcel van der Veer
   3 //!
   4 //! @section Copyright
   5 //!
   6 //! This file is part of Algol68G - an Algol 68 compiler-interpreter.
   7 //! Copyright 2001-2023 J. Marcel van der Veer .
   8 //!
   9 //! @section License
  10 //!
  11 //! This program is free software; you can redistribute it and/or modify it 
  12 //! under the terms of the GNU General Public License as published by the 
  13 //! Free Software Foundation; either version 3 of the License, or 
  14 //! (at your option) any later version.
  15 //!
  16 //! This program is distributed in the hope that it will be useful, but 
  17 //! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
  18 //! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 
  19 //! more details. You should have received a copy of the GNU General Public 
  20 //! License along with this program. If not, see .
  21 
  22 //! @section Synopsis
  23 //!
  24 //! REAL generalised incomplete gamma function.
  25 
  26 // Generalised incomplete gamma code in this file was downloaded from 
  27 //   http://helios.mi.parisdescartes.fr/~rabergel/
  28 // and adapted for Algol 68 Genie.
  29 //
  30 // Reference:
  31 //   Rémy Abergel, Lionel Moisan. Fast and accurate evaluation of a
  32 //   generalized incomplete gamma function. 2019. hal-01329669v2
  33 //
  34 // Original source code copyright and license:
  35 //
  36 // DELTAGAMMAINC Fast and Accurate Evaluation of a Generalized Incomplete Gamma
  37 // Function. Copyright (C) 2016 Remy Abergel (remy.abergel AT gmail.com), Lionel
  38 // Moisan (Lionel.Moisan AT parisdescartes.fr).
  39 //
  40 // This file is a part of the DELTAGAMMAINC software, dedicated to the
  41 // computation of a generalized incomplete gammafunction. See the Companion paper
  42 // for a complete description of the algorithm.
  43 //
  44 // ``Fast and accurate evaluation of a generalized incomplete gamma function''
  45 // (Rémy Abergel, Lionel Moisan), preprint MAP5 nº2016-14, revision 1.
  46 //
  47 // This program is free software: you can redistribute it and/or modify it under
  48 // the terms of the GNU General Public License as published by the Free Software
  49 // Foundation, either version 3 of the License, or (at your option) any later
  50 // version.
  51 //
  52 // This program is distributed in the hope that it will be useful, but WITHOUT
  53 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  54 // FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  55 // details.
  56 //
  57 // You should have received a copy of the GNU General Public License along with
  58 // this program.  If not, see .
  59 
  60 // References
  61 //
  62 //   R. Abergel and L. Moisan. 2016. Fast and accurate evaluation of a
  63 //   generalized incomplete gamma function, preprint MAP5 nº2016-14, revision 1
  64 //
  65 //   Rémy Abergel, Lionel Moisan. Fast and accurate evaluation of a
  66 //   generalized incomplete gamma function. 2019. hal-01329669v2
  67 //
  68 //   F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark
  69 //   (Eds.). 2010. NIST Handbook of Mathematical Functions. Cambridge University
  70 //   Press. (see online version at [[http://dlmf.nist.gov/]])
  71 //
  72 //   W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
  73 //   B. P. Flannery. 1992. Numerical recipes in C: the art of scientific
  74 //   computing (2nd ed.).
  75 //
  76 //   G. R. Pugh, 2004. An analysis of the Lanczos Gamma approximation (phd
  77 //   thesis)
  78 
  79 #include "a68g.h"
  80 #include "a68g-genie.h"
  81 #include "a68g-prelude.h"
  82 #include "a68g-lib.h"
  83 #include "a68g-double.h"
  84 #include "a68g-mp.h"
  85 
  86 #define ITMAX 1000000000        // Maximum allowed number of iterations
  87 #define DPMIN DBL_MIN           // Number near the smallest representable double-point number
  88 #define EPS DBL_EPSILON         // Machine epsilon
  89 #define NITERMAX_ROMBERG 15     // Maximum allowed number of Romberg iterations
  90 #define TOL_ROMBERG 0.1         // Tolerance factor used to stop the Romberg iterations
  91 #define TOL_DIFF 0.2            // Tolerance factor used for the approximation of I_{x,y}^{mu,p} using differences
  92 
  93 // plim: compute plim (x), the limit of the partition of the domain (p,x)
  94 // detailed in the paper.
  95 //
  96 //            |      x              if   0 < x
  97 //            |
  98 // plim (x) = <      0              if -9 <= x <= 0
  99 //            |
 100 //            | 5.*sqrt (|x|)-5.    otherwise
 101 
 102 REAL_T plim (REAL_T x)
 103 {
 104   return (x >= 0) ? x : ((x >= -9) ? 0 : 5 * sqrt (-x) - 5);
 105 }
 106 
 107 //! @brief compute G(p,x) in the domain x <= p using a continued fraction
 108 //
 109 // p >= 0
 110 // x <= p
 111 
 112 void G_cfrac_lower (REAL_T * Gcfrac, REAL_T p, REAL_T x)
 113 {
 114   REAL_T c, d, del, f, an, bn;
 115   INT_T k, n;
 116 // deal with special case
 117   if (x == 0) {
 118     *Gcfrac = 0;
 119     return;
 120   }
 121 // Evaluate the continued fraction using Modified Lentz's method. However,
 122 // as detailed in the paper, perform manually the first pass (n=1), of the
 123 // initial Modified Lentz's method.
 124   an = 1;
 125   bn = p;
 126   f = an / bn;
 127   c = an / DPMIN;
 128   d = 1 / bn;
 129   n = 2;
 130   do {
 131     k = n / 2;
 132     an = (n & 1 ? k : -(p - 1 + k)) * x;
 133     bn++;
 134     d = an * d + bn;
 135     if (d == 0) {
 136       d = DPMIN;
 137     }
 138     c = bn + an / c;
 139     if (c == 0) {
 140       c = DPMIN;
 141     }
 142     d = 1 / d;
 143     del = d * c;
 144     f *= del;
 145     n++;
 146   }
 147   while ((a68_abs (del - 1.0) >= EPS) && (n < ITMAX));
 148   *Gcfrac = f;
 149 }
 150 
 151 //! @brief compute the G-function in the domain x < 0 and |x| < max (1,p-1)
 152 // using a recursive integration by parts relation.
 153 // This function cannot be used when mu > 0.
 154 //
 155 // p > 0, integer
 156 // x < 0, |x| < max (1,p-1)
 157 
 158 void G_ibp (REAL_T * Gibp, REAL_T p, REAL_T x)
 159 {
 160   REAL_T t, tt, c, d, s, del;
 161   INT_T l;
 162   BOOL_T odd, stop;
 163   t = a68_abs (x);
 164   tt = 1 / (t * t);
 165   odd = (INT_T) a68_int (p) % 2 != 0;
 166   c = 1 / t;
 167   d = (p - 1);
 168   s = c * (t - d);
 169   l = 0;
 170   do {
 171     c *= d * (d - 1) * tt;
 172     d -= 2;
 173     del = c * (t - d);
 174     s += del;
 175     l++;
 176     stop = a68_abs (del) < a68_abs (s) * EPS;
 177   }
 178   while ((l < floor ((p - 2) / 2)) && !stop);
 179   if (odd && !stop) {
 180     s += d * c / t;
 181   }
 182   *Gibp = ((odd ? -1 : 1) * a68_exp (-t + lgamma (p) - (p - 1) * a68_ln (t)) + s) / t;
 183 }
 184 
 185 //! @brief compute the G-function in the domain x > p using a
 186 // continued fraction.
 187 //
 188 // p > 0
 189 // x > p, or x = +infinity
 190 
 191 void G_cfrac_upper (REAL_T * Gcfrac, REAL_T p, REAL_T x)
 192 {
 193 // Special case
 194   if (a68_isinf (x)) {
 195     *Gcfrac = 0;
 196     return;
 197   }
 198 // Evaluate the continued fraction using Modified Lentz's method. However,
 199 // as detailed in the paper, perform manually the first pass (n=1), of the
 200 // initial Modified Lentz's method.
 201   REAL_T an = 1, bn = x + 1 - p;
 202   REAL_T c, d, del, f;
 203   BOOL_T t = (bn != 0);
 204   INT_T i, n;
 205   if (t) {
 206 // b{1} is non-zero
 207     f = an / bn;
 208     c = an / DPMIN;
 209     d = 1 / bn;
 210     n = 2;
 211   } else {
 212 // b{1}=0 but b{2} is non-zero, compute Mcfrac = a{1}/f with f = a{2}/(b{2}+) a{3}/(b{3}+) ...
 213     an = -(1 - p);
 214     bn = x + 3 - p;
 215     f = an / bn;
 216     c = an / DPMIN;
 217     d = 1 / bn;
 218     n = 3;
 219   }
 220   i = n - 1;
 221   do {
 222     an = -i * (i - p);
 223     bn += 2;
 224     d = an * d + bn;
 225     if (d == 0) {
 226       d = DPMIN;
 227     }
 228     c = bn + an / c;
 229     if (c == 0) {
 230       c = DPMIN;
 231     }
 232     d = 1 / d;
 233     del = d * c;
 234     f *= del;
 235     i++;
 236     n++;
 237   }
 238   while ((a68_abs (del - 1.0) >= EPS) && (n < ITMAX));
 239   *Gcfrac = t ? f : 1 / f;
 240 }
 241 
 242 //! @brief compute G : (p,x) --> R defined as follows
 243 //
 244 // if x <= p:
 245 //   G(p,x) = exp (x-p*ln (|x|)) * integral of s^{p-1} * exp (-sign (x)*s) ds from s = 0 to |x|
 246 // otherwise:
 247 //   G(p,x) = exp (x-p*ln (|x|)) * integral of s^{p-1} * exp (-s) ds from s = x to infinity
 248 //
 249 //   p > 0
 250 //   x is a real number or +infinity.
 251 
 252 void G_func (REAL_T * G, REAL_T p, REAL_T x)
 253 {
 254   if (p >= plim (x)) {
 255     G_cfrac_lower (G, p, x);
 256   } else if (x < 0) {
 257     G_ibp (G, p, x);
 258   } else {
 259     G_cfrac_upper (G, p, x);
 260   }
 261 }
 262 
 263 //! @brief iteration of the Romberg approximation of I_{x,y}^{mu,p}
 264 
 265 void romberg_iterations (REAL_T * R, REAL_T sigma, INT_T n, REAL_T x, REAL_T y, REAL_T mu, REAL_T p, REAL_T h, REAL_T pow2)
 266 {
 267   INT_T j, m;
 268   REAL_T sum, xx;
 269   INT_T adr0_prev = ((n - 1) * n) / 2;
 270   INT_T adr0 = (n * (n + 1)) / 2;
 271   for (sum = 0, j = 1; j <= pow2; j++) {
 272     xx = x + ((y - x) * (2 * j - 1)) / (2 * pow2);
 273     sum += a68_exp (-mu * xx + (p - 1) * a68_ln (xx) - sigma);
 274   }
 275   R[adr0] = 0.5 * R[adr0_prev] + h * sum;
 276   REAL_T pow4 = 4;
 277   for (m = 1; m <= n; m++) {
 278     R[adr0 + m] = (pow4 * R[adr0 + (m - 1)] - R[adr0_prev + (m - 1)]) / (pow4 - 1);
 279     pow4 *= 4;
 280   }
 281 }
 282 
 283 //! @ compute I_{x,y}^{mu,p} using a Romberg approximation.
 284 // Compute rho and sigma so I_{x,y}^{mu,p} = rho * exp (sigma)
 285 
 286 void romberg_estimate (REAL_T * rho, REAL_T * sigma, REAL_T x, REAL_T y, REAL_T mu, REAL_T p)
 287 {
 288   REAL_T *R = (REAL_T *) get_heap_space (((NITERMAX_ROMBERG + 1) * (NITERMAX_ROMBERG + 2)) / 2 * sizeof (REAL_T));
 289   ASSERT (R != NULL);
 290 // Initialization (n=1)
 291   *sigma = -mu * y + (p - 1) * a68_ln (y);
 292   R[0] = 0.5 * (y - x) * (a68_exp (-mu * x + (p - 1) * a68_ln (x) - (*sigma)) + 1);
 293 // Loop for n > 0
 294   REAL_T relneeded = EPS / TOL_ROMBERG;
 295   INT_T adr0 = 0;
 296   INT_T n = 1;
 297   REAL_T h = (y - x) / 2;       // n=1, h = (y-x)/2^n
 298   REAL_T pow2 = 1;              // n=1; pow2 = 2^(n-1)
 299   if (NITERMAX_ROMBERG >= 1) {
 300     REAL_T relerr;
 301     do {
 302       romberg_iterations (R, *sigma, n, x, y, mu, p, h, pow2);
 303       h /= 2;
 304       pow2 *= 2;
 305       adr0 = (n * (n + 1)) / 2;
 306       relerr = a68_abs ((R[adr0 + n] - R[adr0 + n - 1]) / R[adr0 + n]);
 307       n++;
 308     } while (n <= NITERMAX_ROMBERG && relerr > relneeded);
 309   }
 310 // save Romberg estimate and free memory
 311   *rho = R[adr0 + (n - 1)];
 312   a68_free (R);
 313 }
 314 
 315 //! @brief compute generalized incomplete gamma function I_{x,y}^{mu,p}
 316 //
 317 //   I_{x,y}^{mu,p} = integral from x to y of s^{p-1} * exp (-mu*s) ds
 318 //
 319 // This procedure computes (rho, sigma) described below.
 320 // The approximated value of I_{x,y}^{mu,p} is I = rho * exp (sigma)
 321 //
 322 //   mu is a real number non equal to zero 
 323 //     (in general we take mu = 1 or -1 but any nonzero real number is allowed)
 324 //
 325 //   x, y are two numbers with 0 <= x <= y <= +infinity,
 326 //     (the setting y=+infinity is allowed only when mu > 0)
 327 //
 328 //   p is a real number > 0, p must be an integer when mu < 0.
 329 
 330 void deltagammainc (REAL_T * rho, REAL_T * sigma, REAL_T x, REAL_T y, REAL_T mu, REAL_T p)
 331 {
 332 // Particular cases
 333   if (a68_isinf (x) && a68_isinf (y)) {
 334     *rho = 0;
 335     *sigma = a68_neginf ();
 336     return;
 337   } else if (x == y) {
 338     *rho = 0;
 339     *sigma = a68_neginf ();
 340     return;
 341   }
 342   if (x == 0 && a68_isinf (y)) {
 343     *rho = 1;
 344     (*sigma) = lgamma (p) - p * a68_ln (mu);
 345     return;
 346   }
 347 // Initialization
 348   REAL_T mA, mB, mx, my, nA, nB, nx, ny;
 349   G_func (&mx, p, mu * x);
 350   nx = (a68_isinf (x) ? a68_neginf () : -mu * x + p * a68_ln (x));
 351   G_func (&my, p, mu * y);
 352   ny = (a68_isinf (y) ? a68_neginf () : -mu * y + p * a68_ln (y));
 353 // Compute (mA,nA) and (mB,nB) such as I_{x,y}^{mu,p} can be
 354 // approximated by the difference A-B, where A >= B >= 0, A = mA*exp (nA) an 
 355 // B = mB*exp (nB). When the difference involves more than one digit loss due to
 356 // cancellation errors, the integral I_{x,y}^{mu,p} is evaluated using the
 357 // Romberg approximation method.
 358 
 359   if (mu < 0) {
 360     mA = my;
 361     nA = ny;
 362     mB = mx;
 363     nB = nx;
 364   } else {
 365     if (p < plim (mu * x)) {
 366       mA = mx;
 367       nA = nx;
 368       mB = my;
 369       nB = ny;
 370     } else if (p < plim (mu * y)) {
 371       mA = 1;
 372       nA = lgamma (p) - p * a68_ln (mu);
 373       nB = fmax (nx, ny);
 374       mB = mx * a68_exp (nx - nB) + my * a68_exp (ny - nB);
 375     } else {
 376       mA = my;
 377       nA = ny;
 378       mB = mx;
 379       nB = nx;
 380     }
 381   }
 382 // Compute (rho,sigma) such that rho*exp (sigma) = A-B
 383   *rho = mA - mB * a68_exp (nB - nA);
 384   *sigma = nA;
 385 // If the difference involved a significant loss of precision, compute Romberg estimate.
 386   if (!a68_isinf (y) && ((*rho) / mA < TOL_DIFF)) {
 387     romberg_estimate (rho, sigma, x, y, mu, p);
 388   }
 389 }
 390 
 391 // A68G Driver routines
 392 
 393 //! @brief PROC gamma inc g = (REAL p, x, y, mu) REAL
 394 
 395 void genie_gamma_inc_g_real (NODE_T * n)
 396 {
 397   A68_REAL x, y, mu, p;
 398   POP_OBJECT (n, &mu, A68_REAL);
 399   POP_OBJECT (n, &y, A68_REAL);
 400   POP_OBJECT (n, &x, A68_REAL);
 401   POP_OBJECT (n, &p, A68_REAL);
 402   REAL_T rho, sigma;
 403   deltagammainc (&rho, &sigma, VALUE (&x), VALUE (&y), VALUE (&mu), VALUE (&p));
 404   PUSH_VALUE (n, rho * a68_exp (sigma), A68_REAL);
 405 }
 406 
 407 //! @brief PROC gamma inc f = (REAL p, x) REAL
 408 
 409 void genie_gamma_inc_f_real (NODE_T * n)
 410 {
 411   A68_REAL x, p;
 412   POP_OBJECT (n, &x, A68_REAL);
 413   POP_OBJECT (n, &p, A68_REAL);
 414   REAL_T rho, sigma;
 415   deltagammainc (&rho, &sigma, VALUE (&x), a68_posinf (), 1, VALUE (&p));
 416   PUSH_VALUE (n, rho * a68_exp (sigma), A68_REAL);
 417 }
 418 
 419 //! @brief PROC gamma inc = (REAL p, x) REAL
 420 
 421 void genie_gamma_inc_h_real (NODE_T * n)
 422 {
 423 #if (A68_LEVEL >= 3) && defined (HAVE_GNU_MPFR)
 424   genie_gamma_inc_real_mpfr (n);
 425 #else
 426   genie_gamma_inc_f_real (n);
 427 #endif
 428 }
 429 
 430 //! @brief PROC gamma inc gf = (REAL p, x) REAL
 431 
 432 void genie_gamma_inc_gf_real (NODE_T * q)
 433 {
 434 // if x <= p: G(p,x) = exp (x-p*ln (|x|)) * integral over [0,|x|] of s^{p-1} * exp (-sign (x)*s) ds
 435 // otherwise: G(p,x) = exp (x-p*ln (x)) * integral over [x,inf] of s^{p-1} * exp (-s) ds
 436   A68_REAL x, p;
 437   POP_OBJECT (q, &x, A68_REAL);
 438   POP_OBJECT (q, &p, A68_REAL);
 439   REAL_T G;
 440   G_func (&G, VALUE (&p), VALUE (&x));
 441   PUSH_VALUE (q, G, A68_REAL);
 442 }