
on

Brownian Dynamics simulations
of

concentrated dispersions

J.M. van der Veer





on

Brownian Dynamics simulations
of

concentrated dispersions

J.M. van der Veer



This publication is an extended version of author’s doctorate thesis On Brown-

ian Dynamics Simulations of Concentrated Dispersions. The original thesis was

approved after public defense on 10 April 1992 before the following committee ap-

pointed by the Committee of Deans of the University of Twente:

Supervisor

prof. dr. P.F. van der Wallen Mijnlieff, University of Twente

Co-supervisor

dr. R.J.J. Jongschaap, University of Twente

Referent

dr. J.H.J. van Opheusden, University of Twente / Wageningen University

Members

prof. dr. G. Frens, Delft University of Technology

prof. dr. M.A.J. Michels, KSLA / Eindhoven University of Technology

prof. dr. ir. L. van Wijngaarden, University of Twente

prof. dr. ir. P.J. Zandbergen, University of Twente

The research as published in the original thesis was financially supported by AKZO

International Research Laboratories, Arnhem, the Netherlands.

Copyright © MCMXCII, MMX-MMXVI J.M. van der Veer.

Original printed thesis MCMXCII ISBN 90-9004992-4.

This digital publication was typeset with LATEX, gnuplot, PyMOL and GIMP.



{Als die Musiker die Noten sahen, riefen sie aus

{«Wo ist die Musik? ».

{Aber dann haben sie . . . gespielt.

{Es war schön, es war still und schön.

{ Arvo Pärt }

In memoriam dr. Pieter François van der Wallen Mijnlieff

1927-1996



J.M. van der Veer



Contents

Preface vii

1 Scope of the thesis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structural order in flowing dispersions . . . . . . . . . . . . . . . . 3

1.3 Simulations in rheological modeling . . . . . . . . . . . . . . . . . . 5

1.4 Shear induced ordering in simulations . . . . . . . . . . . . . . . . . 8

1.5 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Model and simulation method 11

2.1 The Brownian dynamics algorithm . . . . . . . . . . . . . . . . . . . 12

2.2 Calculation of the stress tensor . . . . . . . . . . . . . . . . . . . . . 16

2.3 New method to calculate Brownian stress . . . . . . . . . . . . . . . 17

2.4 Calculation of material functions . . . . . . . . . . . . . . . . . . . . 18

2.5 Order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 The direct interaction potential . . . . . . . . . . . . . . . . . . . . . 22

2.7 Reduced units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Appendix. Numerical aspects . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Appendix. Degree of order at equilibrium . . . . . . . . . . . . . . . 28

3 Rheological behaviour and shear induced ordering 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Dynamical behaviour of the model system . . . . . . . . . . . . . . 34

3.4 Shear rate dependent structure . . . . . . . . . . . . . . . . . . . . . 36

3.5 Shear rate dependent material functions . . . . . . . . . . . . . . . 40

3.6 Shear rate dependent long-time diffusion . . . . . . . . . . . . . . . 45

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Artefacts in Brownian dynamics 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Analysis of finite size effects . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Shear induced ordering in large systems . . . . . . . . . . . . . . . 54

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



5 Rheological behaviour at low shear rates 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Shear rate dependent stress tensor components . . . . . . . . . . . 65

5.4 Viscosity and structure at low Péclet numbers . . . . . . . . . . . . 66

5.5 Hydrodynamic contribution to viscosity . . . . . . . . . . . . . . . . 69

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Rheological behaviour of agglomerating dispersions 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Rheology of agglomerating spheres . . . . . . . . . . . . . . . . . . . 77

6.4 Long-time diffusion of agglomerating spheres . . . . . . . . . . . . 82

6.5 Agglomerating sphere doublet dynamics . . . . . . . . . . . . . . . 82

6.6 Shear rate dependent structure . . . . . . . . . . . . . . . . . . . . . 85

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion and outlook 91

A Algorithms 95

A.1 Van den Brule model solver . . . . . . . . . . . . . . . . . . . . . . . 96

A.2 Thermodynamic data from WCA theory . . . . . . . . . . . . . . . . 98

B References to literature 101

C Stellingen 107

vi



Preface

{Haz eterno

{el olvido

{en la memoria

{ Juan Carlos Friebe }

Why would a doctor republish his dissertation almost twenty years after gradua-

tion, without an actual need for revision of its content? There are two reasons for

this.

First, I found while moving to a new home, old back-up media with the sources of

simulation software as well as most of the sources of the thesis. It proved straight-

forward to compile on Linux the simulation software that I wrote for UNIX. Perfor-

mance of workstations has increased so much, that what took a year around 1990,

can now be done in some days. I leisurely spent free time to find answers to some

questions that were left to rest after the graduation party was over and the mili-

tary claimed me for a year of service. This gave me the opportunity to complete the

thesis the way I had in mind back in 1991. Finishing my dissertation before I was

incorporated in the army was a race against time - I was new to rheology and the

rheology department was new to simulations, computer capacity was but a small

fraction of what it is today, software had to be written from scratch, and Brownian

dynamics was a relatively new technique in microrheological modeling.

Second, I wanted to convert the thesis to a modern format for distribution through

digital media, but it proved not possible to make an exact digital copy. For instance,

typesetting and plotting was done with decommissioned software, so the text has

been converted to LATEX and data have been converted to postscript graphs using

gnuplot. Also, graphics presenting dispersion structure and static structure fac-

tor S(k, γ̇) had to be made anew, as original postscript files were lost. While at it

I corrected the inevitable typos and occasionally edited material to improve con-

ciseness, consistency and clarity. I included extra results 1 in the revised text with

the sole intention to complete the work where it was left open in 1991. Of course

I preserved the essence of the original thesis and kept it consistent with state of

1The extra included material essentially concerns N = 32 results in chapter 1, more N = 256
flow curves in chapter 3, N = 864 runs in chapter 5 and more T ∗ = 2.5 runs in chapter 6 to better

establish a
√
Pe dependence of viscosity in a range of shear rates in a dense system as predicted by

theories at the time, and more explicit elaboration of the Van den Brule model which was originally

an appendix but wich is now in chapter 5. The N = 2, 916, N = 6, 912 and N = 16, 384 results in

chapter 4 as to check whether shear induced ordering would still be global in a very large system,

were mostly calculated after I had built a Beowulf cluster at home.

vii



the art in 1991 when the original manuscript was finished. Doing otherwise would

have rendered the material anachronistic. For example, around 1990 it was not yet

feasible to incorporate accurate hydrodynamic interactions in a non-trivial non-

equilibrium three-dimensional simulation, so studying the neglect of hydrodynam-

ics, a central theme in this dissertation, was a legitimate research subject at the

time.

This publication is what I wanted my thesis to have looked like in 1991. Conse-

quently, this new publication is not the one that my committee approved, though I

presume that the committee would have agreed to this new edition since it arrives

at the same conclusions based on the same arguments plus extra results demon-

strating that the original conclusions would not have been different if we would

at the time have had these extra results. This can be confirmed by comparing this

new publication to the original printed thesis. So finally, after almost twenty years,

I can consider this research project as closed.

Studying rheological behaviour through computer simulation - a scientific activ-

ity that should be called computational rheometry - in particular shear induced

ordering in colloids, continues up to this day. I found that my thesis was not the

only one that is concerned with the implementation of a simulation method for dis-

persions, exploring how to operate it such that reliable results are obtained, and

then connect results to theory and experimental results. Even though my career

turned away from this research subject after military service, it is gratifying to see

that we were on the right track, and did what we could do with the hardware at

hand, circa two decades ago. Making this digital edition of the thesis brought back

vivid memories of those hectic years of youthful eagerness, working long days and

dealing with serious setbacks, to have in the end a learned committee approve our

academic rite of passage.

Marcel van der Veer

Uithoorn, 2010-2016
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1

Scope of the thesis

1.1 Introduction

A dispersion is a composite material in which particles of one phase are embed-

ded in another phase. Many products in product groups as lubricants, coatings,

inks, foodstuffs, detergents etcetera are dispersions. Dispersions are subdivided

into many classes, depending on the aggregation state and the size of the dis-

persed particles as well as the aggregation state of the dispersing phase. Examples

of these classes are emulsions, sols, smokes, mists or suspensions. Dispersions find

industrial application as well as application at home, and in many applications,

dispersions will be subjected to deformation and will consequentially flow. Under-

standing the behaviour of dispersions under deformation is essential for the proper

processing, application but also maintenance of dispersions.

Rheology is an interdisciplinary science that studies the flow of substances with a

complex microstructure such as dispersions. In this study we will enter the field of

microrheology, that strives to understand macroscopic rheological behaviour from

microscopic behaviour of a material. The term microrheology is also used when mi-

croscopic tracers are used in rheometry, but we will adhere to the former definition

in this work.

We will be studying the rheological properties of dispersions of rigid spherical parti-

cles immersed in a Newtonian fluid. When particles dispersed in a fluid experience

Brownian motion, these particles are generally sufficiently small, circa O(10nm) up

to order O(10µm), to be classified as colloidal dispersions. Colloids bridge between

nanostructures and particulates and as such exhibit some of the properties of both.

Macromolecules such as proteins or starches also exhibit colloidal behaviour. Col-

loidal dispersions behave like solutions from a macroscopic point of view, for which

they are frequently described as being microheterogeneous.

In this thesis we present results of Brownian dynamics (BD) simulations of a model

system consisting of rigid spherical particles experiencing Brownian motion, that

are dispersed in a Newtonian fluid, and that interact through a pairwise additive

potential that is steeply repulsive as particles come close. We ignored hydrody-

namic interactions since the evaluation of long range hydrodynamic interactions

1



CHAPTER 1

in a non-trivial three dimensional simulation, for instance by a three dimensional

Stokesian dynamics (SD) algorithm, would be computationally prohibitive at this

time1. Hence, in our simplified model, a particle experiences a drag force which

only depends on the relative velocity of the particle with respect to the fluid.

We subjected our model system to planar Couette flow. We made this choice since

most non equilibrium simulations were performed with this type of flow which sup-

plies us with information from which to understand our results. Since reports on

BD simulations in the literature, related to our subject, all date from the last four

years, the work in this thesis is to some extent explorative. Although our model,

owing to the absence of hydrodynamic interactions between particles, is a valid de-

scription of very dilute dispersions, we present results for concentrated systems.

We want to demonstrate that BD is a useful method to study some aspects of

the microscopic behaviour of concentrated dispersions despite the fact that we ne-

glected hydrodynamic interactions between particles if we operate our simulation

method under conditions where systematic artefacts, such as finite size effects, are

not expected. We will show that in our model system, when subjected to shear flow,

changes in rheological properties are accompanied by significant changes in micro-

structural order. We argue that some recent results reported in literature are in

doubt due to systematic (finite size) artefacts or due to deceptive quality of statis-

tics resulting from too short production runs. We observed that there are various

trends in our results which can also be observed in real colloidal dispersions. For

instance, when subjected to shear flow, changes in rheological properties are accom-

panied by significant changes in micro-structural order. From the work presented

in this thesis we want to conclude that in dense dispersions, when neglecting hy-

drodynamic interactions, a repulsive potential at least leads to a structure that is

consistent with that of an actual dispersion of (nearly) hard spheres at low shear

rates, although in general of course no quantitative prediction of material functions

could be obtained. The consistency of structure is probably caused by the fact that

in a dense dispersion, long range hydrodynamic interactions are shielded and are

dominated by short range lubrication forces that are essentially steeply repulsive

pairwise additive interactions when particles come close, not unlike the interaction

potential we applied.

1This research was done around 1990, when performance of computers was a small fraction

of what it is today. At the time SD could only be performed on small two dimensional systems

conveniently named monolayers. Only around 2000, significant advances were made in efficiently

evaluating hydrodynamic interactions in the Stokesian regime.

2
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Figure 1.1: Material functions calculated using the Brownian dynamics simulation

method described in paragraph (3.2). These graphs are a fairly typical result fol-

lowing work initiated by Heyes53,54 representative for publications before this thesis.

The graphs present the contribution to the relative viscosity (left) and to the shear

stress (right) from direct interaction between repulsive Lennard Jones particles as

a function of the Péclet number, in a system of N = 32 particles at three volume

fractions. Shear thinning behaviour can be observed but the fluctuating behaviour

of the shear stress at conditions φ = 0.52, P e > 20 seems counter intuitive.

1.2 Structural order in flowing dispersions

We are interested in those colloidal dispersions of rigid spherical particles, that

can be classified as supra-molecular fluids. The size of the supra-molecular parti-

cles varies from molecular scale to macroscopic scale, that is from order O(10nm)
up to order O(10µm). An important feature at these length scales is Brownian mo-

tion of the supra-molecular particles, induced by thermal motion of the solvent

molecules. The thermodynamic and structural properties of supra-molecular fluids

can be studied using traditional techniques of condensed matter physics. Supra-

molecular fluids can exhibit remarkable structural ordering, at rest or when sub-

jected to flow. It is widely recognised that this ordering influences the rheological

properties. This structural ordering is an important subject in current research. An

introduction to the various ordering phenomena was given by Lekkerkerker66. Col-

loidal dispersions exhibit a variety of structural ordering, both in equilibrium and

when subjected to a flow field. In a shear flow, the structural order will be deter-

mined by the competition of Brownian motion, direct interaction and imposed de-

formation. If Brownian motion dominates direct interaction and convective motion,

the Brownian motion will annihilate structural ordering. Once convective motion

or direct interaction dominates Brownian motion, the structure may differ signif-

3



CHAPTER 1

icantly from a disordered phase. Experimental results on the structural ordering

in nearly hard sphere colloidal dispersions at rest have been reviewed by Pusey

et al.82. Many experiments have been reported in the literature concerning shear

induced order in colloidal dispersions. Some important results will be briefly re-

viewed in this section. The experiments described in this section suggest that shear

induced ordering depends on subtle details of the forces which act on the dispersed

particles, as well as the concentration. In some cases the structural ordering may

be correlated to the structural order at rest.

Crystal like or string like ordering in a sheared concentrated dispersion of charge

stabilised PVC particles was detected by Hoffman57. Pätzold76 also observed layer

formation in a dispersion of glass spheres in mineral oil. He however suggests

that the influence of the vessel wall may be crucial. Furthermore, Ackerson3 advo-

cates precaution in the detection of shear induced ordering using only light scatter-

ing. Steady shear experiments of Ackerson and Pusey5 conducted on nearly hard

sterically stabilised PMMA dispersions indicate the formation of strings which are

directed in the direction of flow. Neutron scattering experiments on sterically sta-

bilised PMMA dispersions in dodecane were reported by Lindner et al67. Their

scattering data suggests the formation of strings which are directed in the vortic-

ity direction, rather than the direction of flow. This was also concluded by Johnson

et al.59, who investigated coated silica dispersions using neutron scattering tech-

niques. Ackerson et al.1,3 have observed shear induced melting in very dilute dis-

persions of charge stabilised particles, which exhibit crystalline order at zero shear

rate. Wagner and Russel93 studied a dispersion of double coated silica particles us-

ing light scattering. Their system is disordered at rest. At high shear rates layered

structures evolve, and the light scattering data indicate a hexagonal symmetry in

the plane perpendicular to the velocity gradient direction. Time dependent effects

are reported, which might be caused by sedimentation of particles. Van der Werff et

al.98 studied a dispersion of hard silica particles using neutron scattering using vol-

ume fractions from 0.35 up to 0.53, and could not detect evidence of shear induced

ordering, in the sense of layer or string formation. Their system exhibits shear

thinning behaviour97. Van der Werff et al. did not observe strong ordering even at

shear rates where the viscosity has reached the second Newtonian plateau. Neither

did they observe shear thickening at high shear rates as observed by Hoffman57.

The results of van der Werff et al.98 suggest that shear induced ordering is not nec-

essarily the single cause of shear thinning behaviour. Ackerson6 reported on the

shear induced order in sterically stabilised PMMA dispersions. The particles be-

have as nearly hard spheres. He used volume fractions from 0.41 up to 0.60. Light

diffraction study shows that at rest four basic interparticle structures can be distin-

guished. These are face centered cubic, two dimensional hexagonally close packed

layers, string and amorphous ordering. Ackerson did not find evidence for strong

ordering with increasing shear in case the equilibrium state is amorphous. At large

shear rates, evidence for layer formation is present in the more concentrated sam-

4
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ples, also at volume fractions comparable to those used by Van der Werff et al.

1.3 Simulations in rheological modeling

The rheological behaviour of a colloidal dispersion is affected by ordering of the

dispersed particles. Therefore, if one describes the rheological behaviour of a dis-

persion away from equilibrium, one has to account for the shear rate dependent

structural order. Examples of such approaches for semi dilute dispersions not too

far from equilibrium are the theories of Ronis83,84, Dhont et al.33 and Dhont34,

which give the shear rate dependent structural order. Similar work for simple flu-

ids was done by Schwarzl and Hess89. Up to this moment there is no theory which

predicts strong ordering in concentrated dispersions at high shear rates. In order

to calculate the material functions in such systems one idealises a structure as ob-

served in experiment, and calculates the stress tensor for this particular structure.

Examples of this approach are the work of Frankel and Acrivos46, Van den Brule28,

and Van den Brule and Jongschaap29.

If one attempts to construct a theory which gives the degree of structural ordering

in concentrated suspensions, it is likely that one will not arrive at an analytical

description. However, if one is interested in predictions of a model which cannot be

handled analytically, one can obtain ‘exact’ numerical predictions from the model

through numerical simulation. The role of simulations in physical research is well

established. Experimental data leads to a model. If this model, with approxima-

tions, can be solved analytically, one obtains an approximate theory. Simulations

can be used to calculate ‘exact’ predictions from the model. Comparison of these

predictions with experimental data tests the validity of the model. Comparison of

these predictions with the results of the approximate theory tests the validity of

the theory. In this thesis, we will be interested in simulation methods which gener-

ate continuous particle trajectories, albeit discretised in time. We will not consider

simulation methods which treat the material of interest as a continuum, such as

finite element methods which are used for the simulation of the flow properties of,

for example, polymer melts in complex geometries. Neither will we consider dis-

crete methods like cellular automata47,51.

An overview of applications of computer simulations to dense dispersion rheology

has been given by Barnes14. The molecular dynamics (MD) technique consists of

simulation of particle dynamics using Newton’s laws of motion. It is widely used to

study equilibrium phenomena in atomic or molecular systems. The technique can

sometimes be used to calculate equilibrium transport coefficients by using Green-

Kubo relations which are based on the fluctuation - dissipation theorem45,58. The

technique of non-equilibrium molecular dynamics (NEMD) can be employed for

computing transport coefficients of molecular systems by direct simulation of the

5
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response to an applied gradient58. In rheology one will be interested in the stress

response to a velocity gradient. The method was introduced by Alder et al.7 to study

transport coefficients of a sheared hard sphere fluid.

As mentioned, MD and NEMD are applicable to atomic or molecular systems. If

one wants to perform simulations on colloidal dispersions, one has to consider both

the dispersed particles as well as the particles which constitute the solvent. In

many cases the dispersed particles are much larger than the solvent molecules,

and thus the solvent molecules vastly outnumber the dispersed particles. Since

one is interested in the dynamics of the dispersed particles only, one does not want

to spend a disproportionate amount of time on the calculation of the dynamics

of the solvent molecules. A solution to this problem is to consider those cases in

which the configuration of the dispersed particles changes much slower than the

configuration of the solvent molecules. In chapter 2 we will define this condition

more precisely. Then the solvent can be modeled as a continuous medium which

transmits hydrodynamic interactions and induces Brownian motion. The equation

of motion will then no longer be Newtonian, but Langevinean56,85. Both BD and

SD solve the Langevin equation. Note that a MD approach is not the only method

with which the Langevin equation can be solved. Ermak and Buckholz41 described

a Monte Carlo method to solve the Langevin equation of a Brownian particle in the

presence of an arbitrary external force. Pearson et al.77 and Valioulis it et al.91 used

a Monte Carlo procedure including hydrodynamic interactions to study cluster size

distributions in a dilute coagulating system which is subjected to flow.

The SD method is applicable to systems where inertia effects of the dispersed par-

ticles have vanished. Due to the linearity of the governing Stokes equation for par-

ticles without inertia50, the many particle hydrodynamic interactions can be cal-

culated in a relatively efficient way. The SD method was introduced by Bossis and

Brady18. An improved formalism was proposed by Durlofsky et al.36. Reviews have

been given by Brady and Bossis24 and by Brady et al.25. The application of SD to the

computation of hydrodynamic transport properties of a monolayer of hard spheres

was reported by Phillips et al.79,80. Bossis and Brady report on the self-diffusion in

a monolayer of Brownian hard spheres under shear19. Bossis and Brady also report

on the rheological behaviour of a monolayer of hard spheres23 and on the rheology

of a monolayer of Brownian hard spheres20. Recently, Boersma et al.17 employed

the SD method to study the onset of shear thickening behaviour in a monolayer

of charged spheres. Up to now no SD results of three dimensional systems are re-

ported in the literature. This is due to the fact that using modern computers, the

evaluation of hydrodynamic interactions is prohibitively time consuming. If one

considers dilute dispersions, simplified descriptions of hydrodynamic interactions

can be used. The BD method is based on the Langevin equation, using simplified

descriptions of hydrodynamic interactions. Although the BD method is valid for

dilute dispersions, it is also used to study concentrated systems. By studying con-

centrated dispersions using BD, one can investigate whether a simplified model

6
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predicts trends which are observed experimentally.

Ermak39 introduced the BD method and used it to study the motion of poly-ions in

solution. Padro et al.74,75 reported on the reliability of BD and the determination

of an effective memory function. Ermak and McCammon40 described how hydro-

dynamic interactions, such as the Oseen or Rotne-Prager tensorial descriptions,

can be introduced in the BD method. In the last decade, various BD studies of the

properties of colloidal dispersions in equilibrium have appeared in the literature.

Gaylor et al.48 studied the time dependence of the structure factor of dilute col-

loidal systems. Bacon et al.11 used an approximate description of hydrodynamic

interactions, and studied the dissociation of particle doublets and the coagulation

of a concentrated dispersion. Van Megen and Snook72 studied self-diffusion in con-

centrated charge-stabilised dispersions, using effective hydrodynamic interactions.

In later work, Van Megen and Snook73 used screened hydrodynamic interactions

when studying space and time correlation functions and intermediate scattering

functions of concentrated dispersions. Ansell et al.10 used the algorithm introduced

by Ermak and McCammon to study the dissociation of particle doublets.

Figure 1.2: Instantaneous configuration calculated using the Brownian dynamics

simulation method described in paragraph (3.2). This plot is a fairly typical result

following work initiated by Heyes53,54 representative for publications before this the-

sis. The plot depicts a system with N = 32 particles at Pe = 100, φ = 0.52. For clarity,

the particles are drawn with reduced diameter. White particles are in the simula-

tion cell, blue particles are periodic images. The particles have adopted a string like

ordering in the direction of flow.
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1.4 Shear induced ordering in simulations

Erpenbeck42 performed NEMD simulations of thermostatted shear flow of hard

sphere fluids. He observed that at very high shear rates the spheres organise into

strings which are directed in the direction of flow. Evans and Morriss44 pointed out

that Erpenbeck42, and later Woodcock100 and Heyes et al.52, used a thermostatting

procedure which assumes a linear velocity profile in the velocity gradient direc-

tion. This type of thermostat will artificially stabilise the string phase. Evans and

Morriss introduced a thermostatting procedure which makes no assumption on the

velocity profile, and observed that the string phase vanished. However, Loose and

Hess68,69 argued that Evans and Morriss introduced a correct thermostatting pro-

cedure, but did not implement it properly. Loose and Hess suggested an improved

implementation, and with their thermostatting procedure string ordering was ob-

served again.

From SD simulations without Brownian motion Bossis and Brady18 suggest that

the structure at high shear rates both depends on particle concentration and the

range of the interparticle potential. The hard sphere system they studied formed

cell spanning clusters at high shear rates, causing a shear thickening effect. It is

interesting to compare these simulation results with the experiments of van der

Werff et al.96,97,98 on hard sphere dispersions. Both in experiment and in simula-

tion, shear induced ordering in the sense of string or layer formation is not ob-

served. However, van der Werff et al. did not observe shear thickening. Bossis and

Brady18 also report that at sufficiently high concentrations, a soft sphere system

forms a layered structure and has a viscosity that is below that of the hard sphere

system at the same conditions. The effect of layer formation competes with clus-

ter formation. At sufficiently high shear rates however, the cluster formation will

dominate layer formation, and a shear thickening effect is again observed. From SD

simulations with inclusion of Brownian motion Bossis and Brady20 conclude that a

hard sphere dispersion will show shear thinning behaviour. This is caused by the

fact that initially the Brownian contribution to the viscosity decreases at a rate

which is higher than the rate at which the hydrodynamic contribution to the stress

increases. As the shear rate increases, the Brownian contribution to the viscosity

vanishes. Since the viscosity of the hard sphere system is the sum of the Brownian

contribution to the viscosity and the hydrodynamic contribution to the viscosity20,

an initial shear thinning regime is followed by a shear thickening regime. Again it

is observed that inclusion of a repulsive potential reduces the suspension viscosity

relative to the hard sphere system at sufficiently low shear rates.

Reports of shear induced ordering studied by BD all date from the last four years.

The first data on the shear thinning behaviour of a colloidal dispersion were re-

ported by Heyes53. In these computations hydrodynamic interactions were ne-

glected and the particles interacted through a Lennard Jones potential. In a later
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paper, Heyes54 reported that the shear thinning in this system is accompanied

by string formation in the direction of flow, similar to the string formation in

NEMD simulations described above. Xue and Grest104 studied the self-diffusion

of charged colloids in the presence of an oscillating shear flow, neglecting hydrody-

namic interactions, and observed a slight layer formation along the shear direction.

Wilemski99 investigated the effect of interparticle forces on shear thinning in con-

centrated aqueous and non aqueous colloidal dispersions, neglecting hydrodynamic

interactions. In the non aqueous systems, shear thinning was accompanied by de-

flocculation of small particle clusters. At sufficiently high shear rates, the particles

form strings in the direction of flow. In the aqueous systems, where the particles

interact through a repulsive potential, the viscosity appeared to be a discontinuous

function of the shear rate. At a sufficiently high volume fraction, this discontinu-

ity coincided with a transition from a disordered state to a layered state. Recently,

Heyes et al.55 reported on depletion flocculation in a binary mixture of model col-

loidal and polymeric particles. At rest, aggregation of the colloidal particles was

observed. At high shear rates, these aggregates are restructured as to form bands

in the direction of flow.

1.5 Organisation of the thesis

In chapter 2 we describe in detail the BD method we employed. We also describe

the calculation of the stress tensor in our model system. In chapter 3 we describe

the shear induced ordering in our model system, and discuss a possible mecha-

nism for its evolution. In chapter 4 we closely examine the question whether shear

induced ordering as described in chapter 3 is an artefact of the implemented sim-

ulation method, and indicate conditions under which the simulation method can

be employed safely. Chapters 3 and 4 are a continuation of the work initiated by

Heyes53,54. Chapters 5 and 6 apply the simulation method. In chapter 5 we inves-

tigate the rheological behaviour of our model for a range of shear rates where the

simulation method can be employed safely. We compare the shear rate dependent

viscosity of our model system with the predictions of a recent theory of Dhont33,34

which was corroborated by experimental work of van der Werff et al.97, and we also

compare results with recent results of Van den Brule28 to assess how the neglect

of hydrodynamic interactions has influenced results. In chapter 6 we report on the

differences in the temperature and shear rate dependent behaviour of systems of

either repulsive or attractive spheres. The results are a starting point for further

studies of for instance weakly aggregating dispersions or colloidal gels.

9





2

Model and simulation method

The application of Brownian dynamics simulations in microrheological modeling is rela-

tively recent. Some results on dispersions are already reported in the literature, but some

aspects of for instance the calculation of the Brownian contribution to the stress tensor are

not treated in literature. In this chapter we discuss in detail the simulation technique and

our model system. The Brownian dynamics algorithm is described. We discuss the calcu-

lation of the stress tensor, and propose a method to evaluate the Brownian contribution

to the stress. The calculation of material functions is described. We describe the potential

we used in our simulations and also reduced units, and how these units map onto actual

dispersions. Finally information is given on computational details.

11



CHAPTER 2

2.1 The Brownian dynamics algorithm

The Brownian dynamics method is applicable to colloidal dispersions in which the

time scale of the dynamics of the dispersed particles is much larger than that of the

fluid molecules. The dynamics of the fluid molecules can be pre-averaged. Hence

the dispersing fluid is modeled as a continuum which exerts a stochastic force on

the dispersed particles. The effect due to the interaction of the particles with the

fluid is recovered as hydrodynamic interaction. The equation of motion of the dis-

persed particles is derived from a Langevin equation56,85 which dictates the force

acting on a, in our case neutrally buoyant, particle

mr̈(t) = fH(t) + f I(t) + fR(t). (2.1)

Here f I denotes the direct electrostatic or Van der Waals force between the par-

ticles. The indirect interaction due to the presence of the fluid molecules has two

distinguishable parts, the hydrodynamic force fH and the stochastic force fR. The

stochastic force sometimes is called the Brownian force, but we reserve that term

for a description of our system at the Smoluchowski level. Note that Brownian dy-

namics is not a true molecular dynamics method since the forces fH and fB have

entered the force balance.

As mentioned in chapter 1, we neglect hydrodynamic interactions depending on

relative positions and velocities. A particle experiences a drag force when it moves

through the fluid, but its motion is considered not to be affected by the disturbance

of the flow field caused by the movement of other particles. The fluid exerts a Stoke-

sian damping force proportional to the velocity of a particle relative to that of the

fluid

fH(t) = −β [ṙ(t)− L · r(t)], (2.2)

where L is the velocity gradient tensor. Hence L · r(t) is the fluid velocity at the

particle origin. The friction coefficient β is expressed in terms of the fluid viscosity

and particle radius a
β = 6πηa. (2.3)

The Langevin equation (2.1) is valid provided the configuration does not change sig-

nificantly during a time required for particle momentum to relax after a stochastic

impulse70. This characteristic relaxation time τR reads

τR =
m

β
=

m

6πηa
. (2.4)

We will consider the case of large β. Then when we divide the Langevin equation

(2.1) by β the left hand side vanishes, and inertia effects are voided. If inertia

effects are absent, the Langevin equation (2.1) reduces to

fH(t) + f I(t) + fR(t) = 0. (2.5)

12
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Since inertia effects are voided, we must confine simulation to systems at very low

Reynolds number Re = ργ̇a2/η, where ρ = N/V is the number density. Substituting

(2.2) into (2.5) yields, after rearrangement

ṙ(0) =
1

β

(

f I(0) + fR(0)
)

+ L · r. (2.6)

We consider an integration time step ∆t which is both large with respect to τR and

small compared to the time scale in which the configuration changes significantly.

The mean stochastic force fR during ∆t equals

fR(0) =
1

∆t

∫ ∆t

0

dτ fR(τ). (2.7)

Using this result, the particle positions can be calculated from

r(∆t)− r(0) =

(

1

β

(

f I(0) + fR(0)
)

+ L · r(0)
)

∆t. (2.8)

We use the Euler forward algorithm (2.8) because the random force, which is an

important term, is uncorrelated in time in our model (vide infra). Equation (2.8)

also follows from the general solution of (2.1) as given by Dotson38 or Heyes53, if

we consider β to be large. We will demonstrate this briefly. Substitution of (2.2) into

the Langevin equation (2.1) gives a differential equation of second order

mr̈(0) + βṙ(0) = f I(0) + fR(0) + βL · r(0). (2.9)

Again we consider an integration time step ∆t which is both large with respect

to τR and small compared with the time scale in which the configuration changes

significantly. Then equation (2.9) can be solved trivially, yielding

ṙ(∆t) = ṙ(0)e−∆t/τR +
1

β

(

1− e−∆t/τR
)

(

f I(0) + fR(0) + βL · r(0)
)

. (2.10)

If we now consider β to be large then, since ∆t is small but finite, equation (2.10)

reduces to

ṙ(∆t) =
1

β

(

f I(0) + fR(0)
)

+ L · r. (2.11)

which leads to the particle update algorithm (2.8).

Now we will derive the covariance matrix of fR(0) in equation (2.8). This treatment

closely follows the analysis of Chandrasekhar and that of Uhlenbeck and Ornstein,

whose papers are reprinted94. We consider a free Brownian particle suspended in

a fluid. The Langevin equation for this particle is

mr̈ = −βṙ+ fR. (2.12)

13
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We assume that the average value of fR vanishes and that there is no correlation

between values of fR in time, hence
{ 〈

fR
〉

= 0
〈

fR(0)fR(t)
〉

= λ δ(t)I
(2.13)

where I is the R
3 → R

3 identity. We will determine the value of λ from the average

squared velocity in an ensemble of identical but independent particles. The formal

solution of the Langevin equation (2.12) reads

ṙ(t) = e−t/τR
(

ṙ(0) +
1

m

∫ t

0

dτ et/τ
R

fR(τ)

)

. (2.14)

If we square equation (2.14) and average the result over an ensemble of identical

but independent particles, we obtain
〈

ṙ2
〉

e2t/τ
R

=

ṙ2(0) +
2

m

∫ t

0

dτ τ/τR
〈

fR(τ)
〉

+ (2.15)

+
1

m2

∫ t

0

dτ ′
∫ t

0

dτ e(τ+τ ′)/τR
〈

fR(τ)fR(τ ′)
〉

.

The first integral in equation (2.15) evaluates to zero since according to equation

(2.13) the average value of the stochastic force vanishes in the ensemble. The sec-

ond integral can be calculated using the trace of
〈

fR(0)fR(t)
〉

following from equa-

tion (2.13). Elaboration of (2.15) then yields

〈

ṙ2
〉

(t) =
3λ

2mβ
+

(

ṙ2(0)− 3λ

2mβ

)

e−2t/τR . (2.16)

If we wait sufficiently long, the velocity distribution in the ensemble will have be-

come Maxwellian, hence

lim
t→∞

〈

ṙ2
〉

(t) =
3λ

2mβ
. (2.17)

The equipartition of energy principle applies to molecules and particles alike, irre-

spective of their size. Therefore we have

1

2
m

〈

ṙ2
〉

=
3

2
kT. (2.18)

Now we obtain the value of λ from combining (2.17) and (2.18)

λ = 2βkT. (2.19)

We will now consider the average random force f̄R which acted on a free Brownian

particle in the time step ∆t. The covariance matrix for f̄R reads
{

〈

f̄R
〉

= 0
〈

f̄R(0)f̄R(t)
〉

=
〈fR(0)fR(∆t)〉

∆t
= 2βkTδ(∆t)

∆t
I

(2.20)
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According to equations (2.6) and (2.8), we can calculate the displacement ∆rR due

to ¯fR through

∆rR(∆t) =
f̄R∆t

β
(2.21)

Hence the covariance matrix for ∆rR is given by

{

〈

rR
〉

= 0
〈

rR(0)rR(t)
〉

=
〈

f̄R(0)f̄R(∆t)
〉

∆t
β

2
= 2D0∆t δ(∆t) I

(2.22)

where D0 = kT/β denotes the diffusion coefficient for a Brownian particle at infi-

nite dilution.

In this thesis we will consider planar Couette flow. The flow direction is along the

x axis, the velocity gradient direction is along the y axis and the vorticity direction

is along the z axis. Then

L = γ̇ exey, (2.23)

where γ̇ is the shear rate and e is a unit vector. We will write the shear rate as a

dimensionless Péclet number Pe, which is a measure of the relative magnitude of

diffusive and convective time scales. We use the customary definition

Pe =
a2γ̇

D0

=
6πηa3γ̇

kT
. (2.24)

The position update algorithm equation (2.8) must be implemented with periodic

boundary conditions which are consistent with planar Couette flow. We choose

Lees-Edwards boundary conditions8,45,65. In the flow direction and in the vortic-

ity direction, customary periodic boundary conditions are applied8. The images in

the velocity gradient direction will move with the flow. Since we chose the velocity

gradient to be in the y direction, the two periodic images along the y axis appear

to move at relative velocity γ̇Ly. Hence, there are discontinuities in the laboratory

positions of particles between cells, but the particles neither experience the bound-

aries of the cell nor the discontinuities, and the system is spatially homogeneous45.

Note that employing Lees-Edwards boundary conditions is sufficient to generate

flow in a simulation, also if the equation of motion does not involve a convective

term. This imposed movement may artificially stabilise structures, which is a re-

current theme in this thesis.
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2.2 Calculation of the stress tensor

In order to calculate relevant rheological material functions, we need the bulk

stress tensor1 T. Following literature 24, we write the bulk stress as a sum of terms

T = αI+TF +TH +TR +TB, (2.25)

The term αI in expression (2.25) denotes an isotropic term of no interest for the

rheology of incompressible suspensions. Although an analysis of the different com-

ponents of the bulk stress for the dilute regime16 and (approximately) for the con-

centrated regime87 can be found in the literature, some details are given below.

The term TF is the contribution of the dispersing fluid. We consider the dispersing

fluid to be Newtonian, hence TF = 2ηE where E is the rate of deformation tensor.

Since TF only makes a constant contribution to the dispersion viscosity, we omit-

ted TF from our calculations. This means that reported values for shear stress and

viscosity are excess values with respect to the (constant) contribution of the sus-

pending Newtonian fluid. The term TH in equation (2.25) denotes the contribution

of hydrodynamic interactions to the bulk stress. As was mentioned in chapter 1,

hydrodynamic interactions which depend on relative positions are absent in our

model and therefore TH is discarded. In a concentrated system hydrodynamic in-

teraction will be dominated by so-called lubrication forces which essentially is a

repulsive pairwise interaction when two particles approach as interspacing liquid

is squeezed out, and an attractive interaction when two particles separate and liq-

uid flows into the gap. The term TI in equation (2.25) is the stress due to the direct

interparticle forces. Because of equation (2.5), the particles in our model are force

free. Following arguments from Batchelor16 and by Jongschaap and Doeksen60, TI

in a system of force free particles is given to first order by a summation over all

particles

TI =
1

V

∑

i

firi, (2.26)

where fi is the total force due to direct interaction on particle i which is at position

ri . Since the particles are force free, the positions ri can be taken with respect to

an arbitrary origin. Most colloidal forces are well represented by pairwise additive

interaction potentials. If such potential is considered, (2.26) can be rewritten as a

sum over particle pairs i, j

TI =
1

V

∑

i

∑

j>i

fij(ri − rj), (2.27)

1For the uninitiated reader: a tensor is a mapping of geometric entities. The stress tensor maps,

on a surface element, a unit normal vector onto the acting force vector. Tensors are independent of

a particular choice of coordinate system.
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During the simulation we estimated TI by a time average, denoted by brackets

<>, of the instantaneous value at time

TI =
1

V

〈

∑

i

∑

j>i

fij(ri − rj)

〉

. (2.28)

2.3 New method to calculate Brownian stress

The term TB in equation (2.25) denotes the Brownian stress tensor, the direct con-

tribution of Brownian motion to the bulk stress. As will be shown in later chapters,

shear flow will induce ordering in our model system. The Brownian motion tends

to annihilate this ordering, thus giving rise to a contribution to the stress. In a

paper of Dhont et al.33 it was argued that TB vanishes once the configuration dis-

tribution function is differentiable throughout phase space. This condition is likely

to be met when the dispersed particles are well separated, for instance by repul-

sive interactions. It is however a priori not clear whether this condition is met

in our simulations. Therefore TB needs to be evaluated explicitly. In this section

we propose a new method to estimate TB in our model system. We calculated the

contribution from Brownian motion to the stress from its definition

TB =
1

V

∫

d3r fBr. (2.29)

where fR is the Brownian force on particle i which is at position r. The Brownian

force on a particle i is defined as a thermodynamic force on the Smoluchowski level

and is related to the gradient of the partition function PN(r1, .., rN ) by

fBi = −kT∇i ln PN . (2.30)

where the gradient operator is with respect to ri. According to Russel 85,86 equation

(2.30) also holds in a concentrated system of interacting particles, which is the

subject of this thesis. We can now elaborate on (2.29)

TB = −kT

V

∑

i

∫

d3r1..d
3rN ∇i PNri. (2.31)

This equation is not adequate for calculation through simulation, since we need to

determine the 3N dimensional function PN . To this end, PN has to be tabulated

with some resolution n. This table would require O(n3N) units storage, which is not

at all available if N is of order O(100). However, equation (2.31) can be reformulated

as

TB = −kT

V

∑

i

∫

d3ri ∇i P1ri, (2.32)
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where we introduced the distribution function Pi which is given by

P1(ri) =

∫

d3r1..d
3ri−1 d

3ri+1..d
3rN PN . (2.33)

The function P1(ri) denotes the probability of finding particle i at position r irre-

spective of the positions of the other particles. This function is only three dimen-

sional, and can therefore be tabulated occupying O(n3) units space. If the particles

are indistinguishable then P1(ri) yields the same value for any particle i and then

(2.31) can be written as

TB = −ρkT

∫

d3r∇iP1(r)r, (2.34)

From this equation it can be seen that TB vanishes in an unbounded isotropic

system. The normalisation of P1 follows from the consideration that a particle must

be somewhere in the system
∫

d3r P1(r) = 1. (2.35)

Using the divergence theorema and integrating (2.34) by parts we find

TB = ρkT

(
∫

∂V

dS P1(r)r− I

)

, (2.36)

meaning that the Brownian contribution to the stress consists of an isotropic term

ρkT I subtracted from a term which vanishes in case P1 vanishes at the system’s

boundary. We found for our model system that in the type of simulations reported

in this thesis, TB made a minute contribution to T. Hence we will only consider

the contribution of the direct interaction between particles TI to T. In chapter 1

we mentioned that Bossis and Brady22 found a significant Brownian contribution

to the stress. The Brownian motion in the Stokesian dynamics algorithm gives, in

conformity with the work of Batchelor16, a Brownian contribution to the stress

through hydrodynamic interaction. We only calculate the direct contribution of

Brownian motion to the stress, and found it negligible.

2.4 Calculation of material functions

In our simulations planar Couette flow will be applied in which the flow direction is

along the x axis, the velocity gradient direction is along the y axis and the vorticity

direction is along the z axis. The contribution from the direct interaction between

particles to the apparent viscosity ηr relative to the fluid viscosity η, is calculated

through its phenomenological definition

ηr =
Txy

ηγ̇
(2.37)
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The first (N1) and second (N2) normal stress difference are also calculated from

their phenomenological definitions

{

N1 = Txx − Tyy

N2 = Tyy − Tzz
(2.38)

Finally, the excess pressure p resulting from the direct interaction between parti-

cles is calculated from its definition

p = −1

3
T : I. (2.39)

2.5 Order parameters

Besides visual inspection of configurations, shear induced ordering of colloidal par-

ticles can be detected in other ways. The most common and efficient way to do this

in simulations is to calculate an order parameter like for instance the pair correla-

tion function g(r) defined by

g(r) =
1

ρ2
〈ρ(0)ρ(r)〉 (2.40)

where the brackets 〈 〉 denote a time average. This is a fairly general order pa-

rameter, which also can be measured indirectly by light scattering experiments. A

disadvantage of g(r) is that deviations from an isotropic liquid conformation may

not be very apparent. We could consider the spatial, shear rate dependent vari-

ant of the pair correlation function g(r, γ̇) but we chose the static structure factor

S(k, γ̇), where k denotes the difference between a scattered and incident wave vec-

tor, since S can be compared with results from SALS or SANS experiments on real

dispersions. We used the common definition of S

S(k, γ̇) = 1

ρV
〈F(k, γ̇)F∗(k, γ̇)〉 = 1

ρV

〈

|F(k, γ̇)|2
〉

, (2.41)

where the brackets 〈 〉 again denote a time average, and where the scattering am-

plitude F reads

F(k, γ̇) =

∫

d3r ρ(r, γ̇)eik·r (2.42)

where we skip discussion of scattering power, that has no consequence for the way

we employ S. In our simulations F is calculated as a summation over particle

positions rm

F(k, γ̇) =
∑

m

eik·rm (2.43)
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from which follows

S(k, γ̇) = 1 +
1

ρV

〈

∑

m

∑

n 6=m

eik·(rm−rn)

〉

(2.44)

which is the expected Fourier transform of the total correlation function h(r, γ̇)
which equals g(r, γ̇)− 1, plus a term (2π)3ρδ(k). We suppressed the k = 0 data since

it tends to dominate the spectrum reducing its visual detail, and also because it is

not accessible through measurement of real dispersions since it coincides with the

outgoing beam. From a numerical point of view, calculation of S(k, γ̇) through local

density ρ(r, γ̇) is preferable over conversion between S(k, γ̇) and g(r, γ̇) by means

of the Fourier transform since both S and g are insufficiently dampened at the

boundaries of the periodic simulation box, giving rise to numerical artefacts.
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Figure 2.1: Weight of order parameter P6[cos θ] as a function of angle with respect to

a director.

In order to investigate shear induced ordering, one has to choose a preferably scalar

order parameter which suitably characterises such ordering. An order parameter

is suitable if it gives decisive information on the state of ordering the system is in.

In chapter 3 we will see that the pair correlation function g(r) defined by equation

(2.40) is less suitable since it is difficult to interpret in a non isotropic structure.

A useful parameter is the structure factor S(k, γ̇) from equation (2.44), and an

obvious advantage of using S(k, γ̇) is the possibility of a direct comparison with

experimentally obtained data reported in the literature, for example the work of

Ackerson and Clark1 and Ackerson2. For some purposes, such as monitoring the

evolution of the structure in time or detecting possible structural transitions, one

needs a parameter which gives an indication of the instantaneous state of ordering

the system is in. Then S(k, γ̇) is less suitable since a proper estimate requires av-

eraging over a considerable number of configurations, hence evolution of structure
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cannot be monitored on time scales shorted than needed to compute an accept-

able average for the structure factor. Suitable parameters are scalar weights of the

Legendre polynomials Pn[cos θ], a spherical harmonic also known as a zonal har-

monic, where θ is an angle between a vector connecting two particles with respect

to a director. The orthogonal polynomials Pn[cos θ] can be generated recursively by

Bonnet’s recursion formula

(n+ 1)Pn+1[cos θ] = (2n+ 1)Pn[cos θ]− nPn−1[cos θ] (2.45)

then proceeding from P0[cos θ] = 1, P1[cos θ] = cos θ we arrive at the order parameter

of interest to us

P6[cos θ] =

〈

1

16

(

231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5
)

〉

. (2.46)

The weight of Pn[cos θ] can be used to detect the occurrence of n fold symmetry in

the structure, hence we expect P6 to detect hexagonal ordering. A computational

advantage of Pn[cos θ] is that moments of cos2 θ are involved, which can be calcu-

lated efficiently. To assess the long range order in the direction of flow x, particle

coordinates were projected onto the yz plane, and the values of Pn[cos θ] where cal-

culated by considering the nearest neighbours of each particle in this projection.

When calculating the contribution of a particular particle, the distance vector with

one arbitrary nearest neighbour was used as a director. In this way, P6[cos θ] is in-

dependent of the orientation of the structure with respect to the y and z axes. To

obtain an indication of the degree of ordering, one needs to know extreme values

for Pn[cos θ] in disordered and perfectly ordered states. To determine the value of

Pn[cos θ] in a disordered state, an estimate of the θ distribution is needed. Although

there is a local ordering of neighbouring particles, the distribution of θ is assumed

to be random since the coordinates of all particles are projected. Hence in the two

dimensional projection many particles which are not nearest neighbours in three

dimensions contribute. Therefore the value of P6[cos θ] in a disordered state is

1

π

∫ π

0

P6[cos θ] dθ =
25

256
= 0.09765... (2.47)

The value of Pn[cos θ] in a perfect hexagonally ordered state can be calculated

straightforwardly since one of the six particles (by default at θ = 0) is fixed as

director

1

5

5
∑

n=1

P6

[

cos
nπ

3

]

=
587

1280
= 0.45859... (2.48)

Since we observed fluctuations in the structural ordering, for example due disloca-

tions, we do not expect to find values of Pn[cos θ] very close to 587/1280. In figure

(4.1) we present a plot of P6 The relatively strong maxima of P6 at 0, π and 2π do

not make P6 more sensitive to layer formation than to hexagonal ordering as the
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director is chosen without preference, so in practice at high N each maximum gets

an equal average weight independent whether the director points to an adjacent

layer, or to the same layer as the test particle. This is also the reason why P2 or P4

will hardly discriminate a disordered, layered or hexagonal ordering.

2.6 The direct interaction potential

We used the Lennard Jones 12, 6 potential for the direct potential from which we

derived f I . This potential resembles interactions found in polymeric and other col-

loidal systems. Although in charge stabilised colloidal systems the DLVO potential

is an approximation to the interaction71, we preferred the Lennard Jones potential

since many results on Lennard Jones systems from molecular dynamics and Monte

Carlo calculations have been published in the literature. Therefore the equilibrium

behaviour of the Lennard Jones system is well documented.

The relation between interaction energy U(r) and interparticle distance r is given

by

ULJ(r) = 4ǫ

(

(σ

r

)12

−
(σ

r

)6
)

, (2.49)

where ǫ denotes the interaction depth. The parameter σ is the distance at which

the interaction is zero. Hence σ can be used as a measure of particle diameter. Fig-

ure (2.2) shows the energy U(r) and the interaction force f(r) = −∇ULJ(r) versus

interparticle distance. The Lennard Jones potential can be used to study both re-

pulsive soft spheres and attractive soft spheres by cutting the potential at some

interparticle distance rcut .

Hansen and Verlet computed the phase diagram49 for an atomic fluid in which

the particles interact through the a long range Lennard Jones potential. We can

use this phase diagram since fluid mechanical interactions do not influence the

equilibrium structure of our system, although it is known that the range of the

potential influences the phase diagram. For our purposes, the Hansen and Verlet

phase diagram suffices.

It is well known12,92 that the structure of a dense system of repulsive particles

will be dominated by the repulsive part of the potential. A repulsive sphere can

in first instance be considered as a hard sphere, though the relative softness of

the repulsive interaction leads to a different effective radius with respect to a hard

sphere. We needed to calculate the effective hard sphere diameter d of the repulsive

core of a Lennard-Jones particle. This effective diameter was calculated to first

order using the Baxter expression92

d =

∫ ∞

0

dr
(

1− e−U0(r)/kT
)

(2.50)
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Figure 2.2: Dimensionless interaction energy U∗ and dimensionless force f ∗ versus

dimensionless distance between particles r∗ for the Lennard Jones 12, 6 potential.

On the left the full potential following equation (2.49) and on the right the repulsive

potential following equation (2.51).

where U0(r) is a repulsive potential defined through92

{

U0(r) = ULJ(r) + ǫ r < 2
1

6σ

U0(r) = 0 r ≥ 2
1

6σ
(2.51)

Note that this approximation involves only temperature; more accurate methods

exist12 involving also density but this simple scheme suffices for this research

project. Table (2.1) lists the effective hard sphere radius in a temperature range

of interest. Listed diameters are in agreement with those reported by Verlet and

Weis92 and are calculated using the program in Appendix A2 that computes ther-

modynamic properties for the Lennard Jones fluid following WCA theory 12,32,78,92.

Figure (2.3) shows, in the range of densities where the system is fluid and thus

WCA theory is valid, good agreement of pressure obtained from simulations and

calculated using the virial expression

p = ρkT − ρ2

6

∫ ∞

0

dr 4πr3 ∇ULJ(r) g(r); g(r) = y(r)e−U0(r)/kT (2.52)

Here y(r) is a pair correlation function for a reference fluid of hard spheres with

diameter following expression (2.50); y(r) is calculated by the program in Appendix

A2 through Wiener-Hopf factorisation as proposed by Baxter13. Appendix 2.9 shows

that for the system in figure (2.3) we observed a solid-liquid phase transition in the

volume fraction range φ ≈ 0.52 − 0.58, that is a density range ρ ≈ 1.0 − 1.1, above

which the WCA approximation will no longer hold.
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T ∗ d
1.0 1.015605
1.5 1.000107
2.0 0.988327
2.5 0.978761

Table 2.1: Temperature dependent effective hard sphere radius according to equa-

tion (2.50).

Quantity Scaling

Length L = L∗σ
Temperature T = T ∗ǫ/k

Time t = t∗σ
√

m/ǫ
Pressure p = p∗ǫ/σ3

Viscosity η = η∗
√
mǫ/σ2

Table 2.2: Conversion of units to reduced units.

2.7 Reduced units

Calculations reported in this thesis have been performed using reduced units. Mi-

croscopic parameters scale quantities to be (approximately) of order O(1). Reduced

units are more natural units for the system which give direct insight in the rel-

ative importance of effects. A purely computational disadvantage of ‘real’ units is

that quantities will have very small values, which might result in loss of accu-

racy or real underflow. Reduced units do not have this disadvantage. The scaling

parameters which are used with the Lennard Jones potential are m, ǫ, σ and Boltz-

mann’s constant k. Reduced quantities are often marked with an asterisk. Table

(2.1) shows some relevant derived scaling factors.

One converts reduced units to real units and vice versa to compare simulation data

with experimental data or to feed parameters from existing real systems into the

simulation. Consider a dispersion at temperature T [K] of uniformly sized spherical

particles with mass density ρ[kg/m] dispersed in a fluid with viscosity η[Pa s]. Using

table (2.2) and the relation for particle mass m = ρπσ3/6, one can show that the

relation between particle diameter σ[m] and fluid viscosity η[Pa s] is

σ =
πρkT

6T ∗

(

η∗

η

)2

. (2.53)

Furthermore, the time scales via

t = t∗
√

πσ5ρt∗

6kT
. (2.54)
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Solvent σ[µm] ρ[gr/cm3] η[mPa s] unit time [s]
n-Dodecane 2.927 0.746 1.344 0.007
Cyclohexane 5.720 0.775 0.980 0.039
Water 8.842 0.997 0.894 0.131
Benzene 16.981 0.874 0.604 0.627

Table 2.3: Values at T = 298K for particle diameter σ, particle and fluid density

ρ, fluid viscosity η and unit time t in SI units, which are compatible with reduced

quantities T ∗ = 2.5 and η∗ = 2, 868 in a system of neutrally buoyant particles.

Table (2.3) lists some actual dispersions of neutrally buoyant particles dispersed

in respectively n-dodecane, cyclohexane, water or benzene, at room temperature

T = 298K corresponding to T ∗ = 2.5 and η∗ = 2, 868.

2.8 Appendix. Numerical aspects

Figure (2.4) shows that at low shear rates, very long runs are needed to obtain a

good estimate of shear stress. In long simulation runs, artefacts may evolve as a re-

sult of accumulating numerical error. To assure that this did not negatively affect

the work described in this thesis, all calculations on all computers were performed

in double precision, id est a 64 or 80 bit real type. More importantly, it was checked

that the integration time step ∆t was not chosen too large. In simulation methods

using random variables, a random number generator must be implemented. If the

quality of the generator is insufficient, simulation results will be in doubt. It is

therefore necessary to experiment with different types of random number genera-

tors to check if different generators yield different simulation results. Uniformly

distributed random numbers can be generated by means of a linear congruent

generator 8,61 or a subtractive generator 81. Two linear congruent generators and

one subtractive generator were implemented. Furthermore, shuffling was intro-

duced to lengthen the sequence of the generators 81. We used a Gaussian random

generator8,22. This generator calls a linear congruent generator twice. To prevent

that vectors of consecutively generated deviates correlate in a hyperplane, we as-

signed to each particle a set of 6 seeds. So in a system containing N particles, 6N
different seeds were used. The seeds were randomised at the start of a simulation

run, using yet another linear congruent generator.

Computations were performed using several computers2: a DECStation 3100 and

APOLLO DN4000 workstation at the faculty of Applied Physics, a VAX 8650 and

2In the period around 1990 there was a shift from centralised computing on mainframes to

decentralised computing on workstations.
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At low shear rates, very long runs are

needed to obtain a good estimate of

shear stress.

a CONVEX C220 at CIV3 and a CRAY Y-MP/4128 at SARA4. The two latter ma-

chines were used to perform long production runs on large systems. The VAX ran

VMS, all the other machines ran UNIX variants. During a typical run for a system

of N = 256 repulsive Lennard Jones particles, about 10 states per second were gen-

erated on the DECStation. If the DECStation’s performance is taken as 1, then the

respective performance5 of the APOLLO is 0.2, the VAX 8650’s performance is 0.5,

the CONVEX’s performance is 5, and the CRAY’s performance is 25.

Initially a FORTRAN program was written performing one type of BD simula-

tion, which was vectorised to run on the CONVEX and the CRAY vector proces-

sors. During the project a general purpose C program, named cs, was developed to

perform Brownian dynamics simulations, but can be expanded to perform molec-

ular dynamics or Stokesian dynamics simulations. The cs program implements

programmable simulation ‘experiments’: a command language interpreter reads

instructions from a protocol file. A trajectory generator integrates the equation of

motion of the particles, and dumps particle trajectories and instantaneous values of

3Centrum voor Informatievoorziening, Universiteit Twente.
4Stichting Academisch Rekencentrum Amsterdam. The CRAY replaced a CDC CYBER 205.
5For comparison, an i686 (Pentium) has relative performance 130-420 depending on number of

cores and configuration details such as memory bandwidth.
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stress tensor components on binary packed files. A calculator calculates instanta-

neous and time averaged values of quantities from the trajectory files. The program

has a toolkit for smoothing, curve fitting, spectral analysis etcetera, offers plotting

facilities for the X Window system, postscript configuration plots, and can write

pdb files for visualisation software such as PyMOL. The program uses standard

libraries for multidimensional complex Fourier transforms6.

Computer simulation around 1990. The DECStation 3100 in the

photo reached circa 2 MFlops, had 8 MB memory and ranked

among the fastest UNIX workstations in its day. To its right are

a tape streamer and a 330 MB disk drive. The workstation was

purchased considering budget spent on VAX 8650 capacity. The

DECStation ran many of the simulations in the original the-

sis, and functioned as a smart terminal to the CONVEX or the

CRAY. To the far right is a book shelf with numerous (mostly UL-

TRIX) manuals. The monochrome display shows a wildly fluctu-

ating correlation function, obviously to the surprise of the author

of this thesis.

6The UNIX version used the NAG library, while the Linux version uses FFTW.
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2.9 Appendix. Degree of order at equilibrium

In order to assess the degree of order in an equilibrium phase, we calculated the

value of a parameter ℵ which is sensitive for translational order8

ℵ =
1

ρV

∫

d3rρ(r) cosq · r, (2.55)

where ρ is the number density and q is a reciprocal lattice vector, which for a face

centered cubic lattice reads

q =
2π

L
[ey − ex − ez] . (2.56)

The value of ℵ is unity in a perfect lattice, and is of order (ρV )−1 in a liquid con-

figuration. The equilibrium structure was characterised for a number of volume

fractions. The value of ℵ was calculated for a range of volume fractions at tempera-

ture T ∗ = 2.5. The structure factor S(k, γ̇) was calculated as well, since the presence

of face centered cubic or liquid like reflections gives additional information on the

state of ordering the equilibrium system is in.

Figure 2.5: The kx=0 projection of the structure factor S(k, γ̇) at φ = 0.52 with ℵ = 0.2
(left), and the kx=0 projection of the structure factor S(k, γ̇) at φ = 0.58 with ℵ = 0.7
(right).

A hard sphere liquid exhibits a thermodynamic liquid-solid phase transition6 at

φ ≈ 0.494. The phase transition starts at a higher volume fraction in our system

because at T ∗ = 2.5, a Lennard Jones particle has an effective hard sphere diameter
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d < σ. Using the table in section (2.6), we arrive at d = 0.98. Hence we expect the

phase transition in our system to take place at φ ≈ 0.53, that is ρ ≈ 1.02. The

latter value is in accordance with our calculations presented in figures (2.3) and

(2.5). In figure (2.5) we see from S(k, γ̇) for two systems at Pe = 0 and T ∗ = 2.5, at

φ = 0.52 and φ = 0.58 respectively, that a fourfold symmetric pattern indicating a

face centered cubic ordering, is absent at φ = 0.52 but dominates at φ = 0.58.
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3

Rheological behaviour and shear
induced ordering

Brownian dynamics (BD) simulations are a relatively new technique, and some results on

dispersions have already been reported in literature. These results mainly concern short

runs involving small systems, and are of explorative character. There is as yet no review of

how to perform BD simulations on the type of model system we have adopted. Establish-

ing this in a systematic way is a main objective for this chapter, in which we present the

results of a BD simulation of concentrated dispersions in planar Couette flow. For a range

of Péclet numbers we have calculated the shear rate dependent stress tensor and resulting

viscosity, and observed the shear induced ordering of the system. We have studied in detail

the long-time correlations in the shear stress which necessitate long simulation runs, espe-

cially for low Péclet numbers. We argue that there are slow transitions between metastable

configurations, each having a slightly different viscosity. For medium range shear rates we

find a layered structure, while for high shear rates a hexagonal ordering of strings of dis-

persed particles is observed. There does not appear to be a sharp transition with the shear

rate between the types of ordering in our simulation runs. The viscosity curve shows only

shear thinning behaviour. We do not find shear thickening behaviour as observed in some

colloidal suspensions.
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3.1 Introduction

The model system we are investigating in this chapter consists of discrete spher-

ical particles, dispersed in a Newtonian fluid which behaves as a continuum. The

particles have a mutual short range repulsive interaction. The interaction of the

suspending fluid with the particles is twofold, one is a simple Stokesian drag ex-

erted on a sphere in stick flow, the other is a stochastic force associated with the

thermal velocities of the fluid molecules. Hydrodynamic interactions between the

particles have been neglected in our model. This system is submitted to a continu-

ous and homogeneous shearing deformation. The shearing influences the station-

ary configuration of the colloidal particles. In this chapter we categorise the types

of structure the system adopts due to the shearing motion for various rates of shear.

We also investigate the effect of the shear rate on the viscosity of the system.

3.2 Simulation details

We employed the BD simulation method described in detail in chapter 2. We con-

sider spherical particles in a periodical image box which are subjected to planar

Couette flow. The Stokesian drag is assumed to be large, hence we neglect particle

inertia. For the direct interaction between the particles we used a Lennard Jones

12, 6 potential with a cutoff distance rcut =
6
√
2, as described in section (2.6). With

this choice of rcut , the particles are repulsive soft spheres. Throughout this chap-

ter, we use reduced units as described in section (2.7). We studied a system with

T ∗ = 2.5 and η∗ = 2, 868. These values were also chosen by Heyes 53, hence we could

use his preliminary results to check our software. Simulations were conducted on

N = 32, N = 64, N = 256, N = 500 and N = 864 particle systems in order to investi-

gate some of the finite size effects. A more systematic study of finite size effects is

given in chapter 4. Unless indicated otherwise, the results reported in this chapter

are calculated for the N = 256 particle system. We used a system with the rather

high volume fraction φ = 0.52. For calculating the volume fraction, we interpreted

the Lennard Jones parameter σ as defined in section (2.6) as a hard sphere diam-

eter. For a temperature dependent value of the effective hard sphere diameter σ,

we refer to section (2.6). The integration time step ∆t in equation (2.8) was cho-

sen such that the maximum displacement per step did not exceed σ/100. When the

random displacements are dominant, the value of ∆t can be calculated from the

maximal value of the random displacement. Since the random displacement is a

Gaussian variate, it may in principle become infinitely large. For computational

reasons variates larger than three times the variance of the distribution were dis-

carded. This did not influence the simulation results. Hence, a good estimate of the
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value of ∆t follows from

3

√

2kT∆t

β
<

σ

100
(3.1)

With this choice, ∆r in equation (2.21) remains the dominant factor in the relative

displacement of neighbouring particles up to shear rates of Pe = 200, which is

beyond the limit we have used in the calculations.

The method we have used during the simulation runs is as follows. We start with

the system in a face centered cubic configuration at φ = 0.52. The stochastic force

rapidly disorders the crystalline configuration. A typical disordering cycle takes

5103 to 1104 iteration steps, independent of the system size. We do not systemati-

cally monitor the disappearance of the crystalline order, since later equilibrations

follow. A method to monitor the decay of the initial ordered structure is described

in the appendix to chapter 2. The only purpose of the melting cycle is to obtain in-

dependent disordered states which may be used for different simulation runs. For

each run we take different seeds for the Gaussian random generator which applies

the stochastic force. During the disordering process the shear flow is not applied.

After the disordering cycle the shear rate is gradually increased from zero to its

final value by raising the value of the parameter γ̇ during a number of iteration

steps, typically of the order of 1104 . According to section (2.7) an elapsed time 1104∆t
would correspond to a few seconds in a dispersion of circa 9µm particles in water

at T = 298K. If the shear is turned on too abruptly, strong oscillations may oc-

cur. These strong oscillations are possibly caused by numerical instabilities. These

instabilities can be caused by pushing the particles too close together, since the con-

figuration cannot relax to a new structure. The resulting large interparticle forces

would cause shock waves in the system. This would be an artefact of the simula-

tion, although shock waves are common in damped driven non-linear systems. Our

algorithm is not particularly fit to handle shock waves. Even with the slow increase

of the shear, we observed distinct transients, for instance in the shear stress, but

these seem to damp out relatively quickly, and they do not influence the results in a

systematic way. After the system has been brought to its final shear rate, the shear

rate is kept constant. We then generate a number of steps of the order of 1104 to let

the system approach its asymptotic structure. Then we sample the stress tensor T

for a sufficiently long time. To obtain an estimate of the time needed we calculated

Σ according to equation (3.1). We found that we had to use rather long runs to get

good statistics for Σ.
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3.3 Dynamical behaviour of the model system

Apart from the stress tensor T and relative viscosity ηr = 〈Txy〉 /(η∗γ̇), we also

investigated the shear stress time correlation function Σ

Σ(∆t) = 〈Txy(t)Txy(t+∆t)〉 (3.2)

The function Σ decays exponentially from the initial value at ∆t = 0 to a final value

at large ∆t 37. These extreme values are given by

Σ(0) =
〈

T 2
xy(t)

〉

(3.3)

lim
∆t→∞

Σ(∆t) = 〈Txy(t)〉2

The characteristic relaxation time τ of the exponential decay is an estimate of the

time which separates two independent configurations. By this we mean that sam-

pling the shear stress from configurations which are less than τ separated in time

does not improve the variance in the mean, since the sampled values are still cor-

related. Hence τ gives an indication of the length a simulation run must have. The

function Σ appears rather sensitive to some specific artefacts that may arise in the

simulation, especially those related to long-time oscillations. These long-time os-

cillations may be caused by the periodicity of the system. A characteristic example

of the results of our simulation procedure is given in figure (3.1), where we plotted

the shear stress as a function of time. The plot begins after the sample has been

subjected to the disordering cycle. One observes a steep rise in Txy(t) after the shear

has been turned on. The shear stress rises with increasing shear rate, but remains

to do so even after the shear rate has become constant. Then Txy(t) goes through a

maximum and stabilises around the asymptotic value. The asymptotic regime still

appears rather noisy. In figure (3.1) we also present the Fourier spectrum of Txy(t)
after the transient has damped. The spectrum appears like that of 1

f
noise, where

the amplitude decreases inversely with the frequency. We do not find this exact

scaling behaviour, but important is that low frequency oscillations have a higher

amplitude than the rapid changes. This behaviour can be understood by consider-

ing a free Brownian particle which moves in one dimension. As the particle drifts

due to diffusion, it will sometimes reside for a while in a relatively small region.

Therefore the Fourier spectrum of the particle position or velocity will not resemble

that of 1
f

noise, and will have relatively strong low frequency components. In our

system the stochastic force induces diffusion of the particles, so the large configu-

rational changes occur at low frequencies. These large configuration changes give

slow fluctuations in the shear stress, but with a relatively large amplitude.

Figure (3.2) presents for several shear rates the decay of the correlation function

Σ(t) with time. In these plots we have scaled Σ(t), with 〈Txy〉2 so one can easily

compare the results for different shear rates. Note that at higher shear rates it
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Figure 3.1: Time dependent shear stress and shear rate during a simulation run

(left) and the Fourier spectrum of the instantaneous shear stress at Pe = 0 (right).

takes very long for Σ(t) to relax to its equilibrium value 〈Txy(t)〉2. Therefore very

long runs are needed. In these long runs we observed low frequency oscillations

of rather large amplitude in the shear stress. In figure (3.2) we also present the

low frequency oscillations in the shear stress as a function of time, after the tran-

sient in the shear stress has damped. We filtered the high frequency oscillations

using a smoothing procedure. The nature of these oscillations is very much differ-

ent from the high frequency ones. Low frequency oscillations are associated with

large conformational changes of the system. It appears that these transitions are

not periodic but show intermittent behaviour. The system resides in a certain state

for some time, and goes to a different state at an unpredictable point. This is par-

ticularly clear for the Pe = 150 curve in figure (3.2). If a single or a few transitions

to other states occur, Σ(t) will be affected such that after an initial decay, a long

time tail appears. When the run is made long enough as to include many of these

transitions, the aperiodic nature of the oscillations in the shear stress will annihi-

late the long-time tail. In short runs we did indeed observe long-time tails. Each of

the metastable configurations has a slightly different viscosity. These differences

are of roughly the same order as the statistical error in the viscosity calculated

from a short run, in which probably a single metastable configuration was sam-

pled. Therefore, if one is only interested in a reasonable estimate of the viscosity,

one does not have to perform a very long run. However, if one samples only a small

part of an oscillation, one will obtain a misleading low value for the statistical er-

ror in the viscosity. As we will show in following chapters, we will need very long

runs for some functions different than the viscosity. The curves in figure (3.2) all

show a rapid initial decrease of Σ(t), which is associated with the short correla-

tion time in high frequency fluctuations. The appearance of the curve for various
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shear rates is quite different however, and it seems as if the system behaves as an

overdamped oscillator at Pe = 5 that quickly relaxes to an equilibrium state, and

as a critically damped oscillator at Pe = 50 that takes a long time to relax to an

equilibrium state. At high shear rates, such as the Pe = 150 curve in figure (3.2),

we even observe behaviour typical for an underdamped oscillator which produced

an oscillating correlation function. Critical damping and underdamping may seem

strange as we have a system with equations of motion in the limit of high damp-

ing, but the strong damping only removes the velocities of the particles from the

model. Other degrees of freedom, associated with excited states, modes or any other

physically identifiable variables, can still have the effective behaviour of a damped

oscillator as suggested by the curves of figure (3.2). In our system it seems that

the observed behaviour is caused by the correlation between the different shear

induced collisions between particles to be discussed shortly.
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Figure 3.2: Shear stress correlation functions (left) and low frequency oscillations

in shear stress (right).

3.4 Shear rate dependent structure

The actual purpose of the simulations is to investigate the microscopic mechanisms

that cause the observed macroscopic behaviour. For example, ordering of colloidal

particles in a dispersion is thought to accompany shear thinning behaviour. In our

model the imposed shear is a simple linear deformation, which is not influenced

by the dispersed particles. If the particles move along with this simple shearing

transformation they will be brought into collision with other particles moving along

at a different y level. The collisions between the particles themselves are strictly
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conservative, but any motion relative to the fluid is strongly damped by the Stokes

drag on the particles. If we can apply the minimisation of dissipation principle

to our system 45, then we can say that any transverse component in the shear

induced collisions gives rise to extra dissipation and the system relaxes to a state in

which such collisions are avoided. While the imposed shear pattern causes similar

patterns to emerge in the ordering of the colloidal particles, the diffusive effect of

the stochastic force will tend to disorder the configuration.

Figure 3.3: Instantaneous configuration with N = 256 particles at Pe = 5 (left) and

Pe = 50 (right). For clarity, the particles are drawn with reduced diameter. White

particles are in the simulation cell, blue particles are periodic images.

Using computer graphics one can observe the induced ordering evolve in time dur-

ing the simulation run. The types of structures observed in this way then may be

indicative for the proper type of order parameter to be used in monitoring the sys-

tem during a full trajectory. This will done in chapter 4. We give snapshots of the

asymptotic states of the system for different shear rates in figures (3.3) and (3.4).

From figure (3.3) it can be observed that at low shear rates (Pe = 5) the particles

essentially adopt a disordered structure. At what we call intermediate Péclet num-

bers (Pe ≤ 50) the particles tend to be organised in two dimensional planes, more

or less perpendicular to the velocity gradient direction as also shown in figure (3.3).

These layers sometimes show a mild curvature in the yz plane, and this curvature

is repeated coherently through all layers. We observed that in some systems per-

sistent grain boundaries evolved in the layered structure. At higher shear rates

(Pe > 50) the particles align in strings in the direction of flow which can be seen in

figure (3.4). These strings are hexagonally packed in the yz plane perpendicular to

the direction of flow. The particles are packed in two dimensional hexagonally close
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Figure 3.4: Instantaneous configuration with N = 256 particles at Pe = 100 (left)

and Pe = 150 (right). For clarity, the particles are drawn with reduced diameter.

White particles are in the simulation cell, blue particles are periodic images. Note

that both hexagonally ordered configurations differ in their orientation.

packed layers. These layers are stacked perpendicular to the velocity gradient di-

rection and the layers can thus freely slip over one another. This type of structure

has been observed experimentally1,2 in dispersions of electrostatically stabilised

particles. Figure (3.4) shows that there is no specific absolute orientation of the

hexagonal pattern perpendicular to the direction of flow, with respect to periodic

yz boundaries of the system, other than that it must be allowed to propagate over

these periodic boundaries. Hence different patterns may be observed, which only

differ in relative orientation towards each other. This will be further addressed in

chapter 4. Figure (4.1) shows that in our simulations P6[cos θ] grows slowly up to

Pe ≈ 80, which more or less coincides with the maximum value for Txy in figure

(3.10), and rises more steeply at higher Péclet numbers. Figure (3.5) shows g(r) for

a disordered state, a layered state and a hexagonal state. At short distances in the

layered and in the hexagonal state, the nearest neighbour particles are somewhat

closer than in the disordered phase. This is due to the fact that the particles are

ordered in layers. In a layer number density of particles is somewhat higher than

in the disordered phase, since space between the layers is evacuated. At large dis-

tances, there is no large deviation from g(r) in a disordered phase. In the hexagonal

state and at larger distances, small deviations from g(r) in a disordered phase oc-

cur since the order is transmitted globally throughout the system. Various kinds of

defects can be recognised in the hexagonal structures emerging in our simulations.

At relatively low density the particles are less tightly packed. Also, the number
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of atoms per string is not constant in all strings, the strings thus contain disloca-

tions. Finally, the hexagonal array is not perfect; the absence of a string causes a

local disturbance in the structure, making the neighbouring strings somewhat less

tightly packed. It is interesting to study the role of the random force in the observed

shear induced ordering. We performed some runs in which we neglected random

motion. To this end, we omitted the term f̄R from the position update algorithm

(2.8). Effectively this renders our model system as a non Brownian dispersion. If

we started the run from a face centered cubic arrangement of the particles, we ob-

served that the particles retained this structure under shear. If we started from a

disordered face centered cubic arrangement, we observed that the particles adopt

the hexagonal structure, even at Péclet numbers of order unity.

As can be expected the tendency for the particles to adopt an ordered structure

will increase with volume fraction φ. A similar tendency from experiment has been

reported1,2. In figure (3.7) we show the kx = 0 plane of S(k, γ̇) of three systems with

increasing volume fraction at Pe = 150. At the lowest volume fraction φ = 0.31
the particles adopt a structure that appears disordered with an initial tendency to

form layers. At volume fraction φ = 0.42 the particles adopt a layered structure. At

volume fraction φ = 0.47 the particles already adopt a hexagonal structure. Hence

figure (3.7) shows that a layer-like structure at φ = 0.42 transforms to a hexagonal

structure at φ = 0.47. This is consistent with the prediction of Woodcock102.
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Figure 3.7: The kx=0 projection of the structure factor S(k, γ̇) at Pe = 150 for volume

fractions φ = 0.31 (left), φ = 0.42 (middle) and φ = 0.52 (right).

3.5 Shear rate dependent material functions
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Figure 3.8: The frequency of the oscillations in the tail of Σ as a function of the shear

rate γ̇.

We can now explain the oscillating tails of the shear stress time correlation func-

tion Σ in figure (3.2). These oscillations become obvious in production runs at Péclet

numbers where hexagonal ordering is visible. Consider a particle which must pass

another particle which is at a different y level and therefore moves at a different

velocity. Since the particles are organised in strings, we expect a coherency in all

these collisions. We therefore assume that the oscillations are caused by these co-

herent collisions. We can check this assumption by plotting the frequency of the

oscillations versus the shear rate. If our assumption holds, we expect a linear de-

pendence since the frequency f of the oscillations is related to the shear rate as
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f = λγ̇, where λ is the distance in the y direction between neighbouring strings. If

we consider a hexagonal system which is not tilted with respect to the z axis then,

since we can estimate the nearest neighbour distance from figure (3.4) to be close

to unity, and λ for nearest neighbouring strings is

λ ≈
√
3

2
= 0.866 ... (3.4)

Of course we may correct for the effective hard sphere radius, in which case λ ≈
0.88. In figure (3.8) we plotted the frequency of the oscillations versus the shear

rate. It can be observed that the data reasonably follows a straight line. The slope

of this line is 0.807±0.04, which compares reasonably well with the expected value.

At all shear rates did the instantaneous values of calculated properties show sub-

stantial fluctuations. Two types of fluctuations can be distinguished. The first is

a short wavelength, periodical oscillation caused by the collision of neighbouring

particles which move at different speed. In a hexagonally ordered state the effect

of all these individual collisions can be observed as a periodical oscillation in the

instantaneous values of Txy, which indicate a phase correlation of these individ-

ual collisions. A phase correlation in turn indicates a crystalline-like order in the

x direction. The second type of fluctuation is a long wavelength, aperiodic oscilla-

tion due to global structural changes, caused by accumulated local disturbances

of the induced structure due to Brownian motion. It takes considerable time for a

configuration to relax to a different stationary state.

We present the shear rate dependent stress tensor components in figure (3.9) show-

ing that the shear stress, the first and second normal stress difference and the

pressure p = −1
3
T : I due to direct interaction between particles, tend to asymptotic

values up until Pe ≈ 80. From this Péclet number on the shear stress and pressure

drop, and the normal stress differences rise. At Pe ≈ 120 the material functions

appear to reach asymptotic values. There are no sharp discontinuities at the Péclet

number where an ordering transition occurs. These were observed in three dimen-

sional non-equilibrium molecular dynamics simulations68. The behaviour of the

shear stress indicates shear thinning behaviour. It should be noted that in our in-

compressible model system shear thinning occurs at constant density, while in ex-

perimental systems the pressure is constant and shear thinning is accompanied by

a small decrease of the density, a point already stressed by Woodcock101. Using the

results on shear induced ordering we can qualitatively understand the behaviour

of the diagonal components of the shear rate dependent stress tensor as presented

in figure (3.9). In shear flow, the particles group into layers in the xz plane. Within

these layers, there is a local increase in density. Due to this packing both Txx and

Tzz will be lower than the values at equilibrium, but Txx and Tzz will also be of

comparable magnitude. Since the layering becomes more pronounced as the Péclet

number increases, Txx and Tzz will be decreasing functions of the Péclet number.

We see this behaviour in figure (3.9) up to Pe = 80. Above this Péclet number the
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Figure 3.9: Material functions as a function of Péclet number in the N = 256 system

(left) and diagonal components of the stress tensor as a function of Péclet number in

the N = 256 system (right).

system tends to attain a global hexagonal ordering. We have seen that the orienta-

tion of the hexagonal lattice with respect to the periodic yz boundaries may vary,

hence the discussion in this paragraph is not valid for too large Péclet numbers.

The layers are stacked in the y direction, and are moved with respect to each other

by the shear flow, hence Tyy will decrease with respect to the value at equilibrium.

Since the layering is more pronounced as the Péclet number increases, Tyy will also

be a decreasing function of the Péclet number. The degree of order in the y direc-

tion is larger than in the x or z direction, hence Tyy will be lower than either Txx

or Tyy . For the normal stress difference it then follows that at not too large Péclet

numbers, N1 is positive and N2 is negative, and that N1 is an increasing function

of the Péclet number and N2 is a decreasing function of the Péclet number. More-

over N1 and N2 are of comparable absolute magnitude. It also follows that at not

too large Péclet numbers the pressure due to direct interaction will increase with

the Péclet number. When the transition from layered ordering to hexagonal order-

ing is studied by visually inspecting configurations generated during a simulation

run, it can be seen that in the layered structure a single string forms. Around this

first string, others form. Sometimes such a growing cluster is annihilated again.

If a growing hexagonal cluster reaches the periodic yz boundaries, the hexagonal

ordering is global and apparently stable, at least on the time scale of the simula-

tion, since a global hexagonal ordering was never seen to be annihilated again. In

figure (3.10) we present the viscosity of the system as a function of the Péclet num-

ber. Over the full range of Péclet numbers one observes shear thinning behaviour,

and a second Newtonian plateau is apparently reached. For large Péclet numbers

the contribution from the direct interaction to the viscosity vanishes. This means
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particles in a system at φ = 0.52, as a function of the number of particles.

that the viscosity drops to the value of that of the suspending fluid. Shear thin-

ning behaviour in dispersions with purely repulsive interparticle interaction has

been observed experimentally 62,63,64. We did not find shear thickening behaviour

as observed in some colloidal suspensions 57. As is common in non equilibrium sim-

ulations, the signal to noise ratio deteriorates as the disturbing field gets weak 45.

For low values of the Péclet number the fluctuations in the shear stress are very

large, and a good estimation of the viscosity is no longer possible. This is indicated

by the error bars in figure (3.10) which at these lower Péclet numbers are probably

even underestimated. These large fluctuations make it in practice impossible, at

least in the approach we have used, to obtain information about the existence of a

first Newtonian plateau at low shear rates.

Figures (3.11) and (3.12) present results1 for material functions at three volume

fractions. Where figures (3.9) and (3.10) can be representative for production runs

where one shear rate proceeds from the particle trajectories of a previous run at

the preceding shear rate, figures (3.11) and (3.12) present data for runs that all

started from a disordered phase at zero shear rate. At volume fractions φ = 0.31
and φ = 0.42 we see continuous trends in material functions although the φ = 0.42
system appears to pass a maximum in shear stress before settling at a slightly

lower plateau value. Since a run did not start from the configuration of a run at

the preceding shear rate, we see more erratic behaviour for the φ = 0.52 data at

Pe > 80 which we explain from a hexagonally packed lattice that may have an ori-

entation that does not match that of runs at other shear rates. This corroborates

the suggestion in last paragraph that the discussion of the relative values of diag-

1These results were not in the original thesis.
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onal stress tensor components, specifically the relation Tyy < Txx ≈ Tzz, may not

hold at too large Péclet numbers. The discussion on the orientation of the hexago-

nal lattice directly leads to the question whether these results, including hexagonal

ordering, are artefacts from the periodic boundary conditions that allow for differ-

ent orientations of the hexagonal lattice in the yz plane. This will be addressed in

chapter 4.
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Péclet number in the N = 256 system at three volume fractions.

3.6 Shear rate dependent long-time diffusion

The particles move along the direction of flow in straight lines. It appears, as we

expected, that the random force counteracts the formation of the hexagonal struc-

ture. Only when the shear rate is sufficiently high, such that shear forces dominate

the random forces, the hexagonal structure can evolve. Since, if random forces are

not present, the particles in the hexagonal structure move in straight lines, we can

calculate a long-time diffusion coefficient for the system from

D = lim
t→∞

1

2

∂

∂t
〈(r(t)− r(0))(r(t)− r(0))〉 (3.5)

where r(t) is the position at time t of a particle which was at r(0) at t = 0. To

calculate D, we have corrected the displacements in the direction of flow for the

systematic displacement due to the flow. In table (3.1) we present for selected Péclet

numbers the values of the diagonal components of D with respect to their value

at infinite dilution D0 = kT/β. We see that Dxx increases and reaches a value of

approximately 4D0 at high shear rates. This is caused by the fact that the particles

in the string are further apart in the direction of flow than in the disordered phase.

The values of Dyy and Dzz initially increase as the shear rate increases, but both

decrease again at Péclet numbers where shear induced ordering becomes visible.

The ratio of Dxx to either Dyy or Dzz at high shear rates reaches order O(10).

All diagonal components of D increase at low Péclet numbers since the flow forces

particles at different levels in the velocity gradient to pass one another. Due to the

direct interaction, a particle has to move aside while passing other particles. Hence
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Pe Dxx Dyy Dzz

5 0.7 0.6 0.5
50 2.0 0.7 1.2
100 3.7 0.3 0.7
150 3.8 0.3 0.6

Table 3.1: Diagonal components of the diffusion tensor, relative to D0.

there is extra displacement in excess to diffusion. At higher shear rates, structural

ordering becomes apparent. Both in the layered and the hexagonal ordering dis-

placement in the y and z direction is hindered. Hence we expect Dyy and Dzz to

decrease after the initial increase. From table (3.1) we see that at Péclet numbers

where structural ordering is visible, Dzz exceeds Dyy. At intermediate shear rates,

the layer formation counteracts transversal diffusion, whereas in a layer lateral

diffusion is apparently less hindered. In the hexagonal structure a particle can

move more freely in the z direction than in the y direction, hence we expect Dzz to

exceed Dyy.

3.7 Discussion

The transient effects in Σ(t) as observed in the simulations are probably not the

same as those arising in real experiments. For example, in a simulation they ap-

pear at a time scale which is orders of magnitude smaller than that in an exper-

iment. In the simulation the transient is caused by induced collisions of particles

in the liquid like configuration when the shear flow is turned on. Because particles

at different y levels are moved relative to each other due to the imposed shearing

motion, the equilibrium is distorted. The contacts between particles of different

y levels is diminished, which can finally lead to a layered structure. Then the par-

ticles diffuse in the layer but cannot move out of the layer.

In a real system the transient effect is caused by a different mechanism. If shear

flow is incepted, high velocity gradients may occur near the vessel walls. It takes

a relatively long time before a uniform shearing of the dispersion is accomplished.

In the simulation a uniform shear flow is imposed on the system by the algorithm,

which not only externally forces the particles at the edges of the periodic image box

to perform shear motion, but also imposes a uniform velocity gradient throughout

the system. Indeed because of the particular type of periodical boundary condi-

tions, there is no edge to the system, and one finds only bulk flow. On the other

hand, the literature does describe experiments that can be explained by structural

ordering of colloidal particles. It is therefore tempting to claim that BD simulations

as reported in this chapter mimic effects seen in actual dispersions. One must how-

ever realise that the structural ordering seen in the simulations can be an artefact
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of the finite size of the system, or even of the imposed boundary conditions. This

must be worked out before studying the rheological properties of our model system,

therefore we dedicate chapter 4 of this thesis to finite size effects.

It can be understood that the viscosity decreases with increasing shear rate in our

model system. The only contribution to the shear stress comes from the direct inter-

action of the particles. When the shear rate becomes high enough for the particles

to organise themselves in layers, the increased density in a layer will make near-

est neighbours pack in a hexagonal manner within a layer, thereby diminishing the

contribution to the stress from direct interaction within a layer due to symmetry

within a layer. At even higher shear rates, the contribution from direct interaction

to the stress vanishes due to global symmetry in the structure in case the parti-

cles adopt an ideal hexagonal ordering. The hexagonal ordering can for example be

caused by a mechanism which resembles the mechanism of layer formation. When

a layered structure is present, there still will be particles moving out of these lay-

ers, if only by a small distance. Collisions with particles from the adjacent layer

will not only move them back into the plane, but will also have an effect on the

particles in that adjacent plane, which are moved aside because of the direct inter-

action. Thus we expect that each particle moving out of its layer etches a groove in

the adjacent layer before it is pushed back. These grooves will disappear because

of the in lateral diffusion, but when the shear rate is high enough the lateral dif-

fusion will no longer make the grooves disappear. The direct interaction between

the particles can be minimised by ordering the particles into strings, which them-

selves are hexagonally ordered in the plane perpendicular to the shear direction.

Note that we did not investigate the motion of the individual particles, hence the

discussion is somewhat tentative.

Both the mechanism for layer formation and string formation may be influenced

by the finite system size in the simulation. When the layered state evolves from

the isotropic state at the appropriate Péclet number, the particles leave behind

an evacuated space as they are brought into collision with particles at different

y levels. Transverse diffusion closes the evacuated space, but becomes insufficient

for large shear rates. When the system is periodic a particle may enter its own

wake, and at high shear rates that seems unavoidable. That would give an arti-

ficial stabilising effect for both the layered and the hexagonal state in the simu-

lation. Particles in strings can enter their own wake, but particles in layers may

enter the groove of other particles in the same plane because of lateral diffusion.

Because the planes need not be completely flat, but rather must have coherent

transverse fluctuations, the simulation artefact is diminished. For the hexagonal

ordering there is no such feature. We have performed simulations at different sys-

tem sizes. The N = 32 particle system appears too small whatsoever, and for larger

particle numbers the system size increases with the cube root only. Therefore we

took systems with elongated image boxes in the x direction only. In all cases the

hexagonal ordering appeared. This point will be addressed in chapter 4.
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Artefacts in Brownian dynamics

In chapter 3 we established operational parameters for running Brownian dynamics (BD)

simulations on the model system we have adopted. We explored BD simulation of a sheared

concentrated dispersion of Lennard Jones particles. Structural ordering is seen in these

simulations that on the one hand may mimic ordering effects seen in real dispersions as

reported in literature. On the other hand, the ordering effects seen in our simulations may

be an effect of finite size or boundary conditions. This issue will be addressed in this chap-

ter, before we use our simulation method to study in depth the rheological behaviour of our

model system in chapter 5. In this chapter, material functions in shear flow are calculated

as a function of system size and shear rate. At high shear rates, shear induced ordering

evolves. This ordering is global in systems containing up to approximately N = 500 parti-

cles. We show that the properties of systems with global ordering depend on the dimensions

of the containing box. This means that global shear induced ordering as reported here and

in the literature is an artefact, at least in small systems. We found that in the specific sys-

tem we studied, for particle numbers less than approximately 1, 000, the BD method can

only be applied safely in a small range of shear rates. The physical implication is that we

can demonstrate in our model system shear thinning behaviour associated with concentra-

tion of particles in layers perpendicular to the velocity gradient, but we do not know with

certainty where the second Newtonian plateau for our models system starts, and what

viscosity is associated with it.
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4.1 Introduction

In the last years, various papers have appeared reporting shear induced ordering

of spherical particles in shear flow, both in non-equilibrium molecular dynamics

simulations and recently also in Stokesian dynamics and BD simulations. These

papers were reviewed in chapter 1. In these simulations, particles can adopt layer -

or string - like structures, depending on various parameters such as interparticle

potential, concentration and shear rate. From the beginning on it has been ques-

tioned whether this shear induced ordering is an artefact of the applied simulation

method. In non-equilibrium molecular dynamics simulations, for example, the oc-

currence of shear induced ordering depends on the type of thermostat which is

operated, and even how a specific thermostat is implemented44,69. In this chap-

ter, we focus on BD simulations. Throughout this chapter, we use reduced units as

described in paragraph (2.7). To compare with results in chapter 3, we studied a

system with T ∗ = 2.5, η∗ = 2, 868 and φ = 0.52. We show that in relatively small

systems, containing some hundreds of particles, clear finite size effects occur. The

simulations also suggest that in very large systems, containing many thousands of

atoms, string ordering might not be global.

4.2 Analysis of finite size effects
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Figure 4.1: Shear stress as a function of system size and Péclet number.

A straightforward way to study finite size effects is to investigate whether inten-

sive properties exhibit extensive behaviour. Hence, a simulation has been done in

which at a constant density and Péclet number, the volume of a cubic system was

varied. The volume was varied such that the system contained N = 32, N = 64,
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N = 108, N = 256, N = 500, N = 864, N = 2, 916, N = 6, 912 and N = 16, 384 parti-

cles1 successively. The simulation was repeated at Péclet numbers Pe = 1, Pe = 10,

Pe = 100 and Pe = 150 respectively. We show results for the shear stress Txy in

figure (4.1). At Péclet numbers 1 and 10 the shear stress does not significantly de-

pend on the particle number if the particle number exceeds N = 100. At Péclet

numbers Pe = 100 and Pe = 150 there is a clear dependence of the shear stress

on the particle number. The large differences at Pe = 100 may be the result of a

structure that is close to the transition of a layered to a hexagonal ordering, The

structural ordering appears to depend on the system size at Péclet numbers 100,

which is a shear rate just above that at which Txy reaches a maximum and P6 starts

to increase quickly. Figure (4.2) shows that at Pe = 100, a stable hexagonal config-

uration exist in the N = 256 system. At Pe = 100 however, the N = 864 system

exhibits an instable hexagonal structure. In this case, strings form and are anni-

hilated continuously. In the figure, the result of this creation-annihilation process

is visible as grain boundaries, for example the one that run through the N = 864
system. This size dependence of hexagonal ordering suggests that string formation

might be artificially stabilised by the periodicity in the flow direction. We described

in chapter 3 how a particle leaving its layer in the transversal direction y will etch

a groove in an adjacent layer. If the Péclet number is sufficiently high, lateral diffu-

sion cannot annihilate the groove and the etching particle may enter its own groove

upon crossing the boundary in the x direction. This artificially stabilises strings. If

this hypothesis is true, then if the system is extended in the direction of flow x, a

decreasing degree of ordering is expected. Figure (4.2) also hints at why different

runs may result in a hexagonal ordering tilted at different angles in the yz plane;

the layers in the N = 864 system show a mild curvature that is propagated coher-

ently over the periodic boundaries - when these layers break up to form strings, a

tilted hexagonal stacking results.

A simulation has been done in which the Péclet number and the density were kept

constant, and the volume was increased by extending the box in the direction of

flow. The Péclet number was fixed at 150. Table (4.1) lists the number of parti-

cles per elongated system we investigated. Figure (4.3) shows that the shear stress

and P6[cos θ] tend to asymptotic values with increasing length along the direction

of flow. All systems exhibit global hexagonal ordering. The evolution of Txy and

P6[cos θ] in time shows that there is no clear relation between the length along the

direction of flow and the point in time were a stationary state is reached. This ‘equi-

libration’ time is therefore not a decisive criterion in detecting a possible artefact.

One can conclude that string formation is not an effect of the periodicity in the

direction of flow alone. Hence we investigated the possible influence of the forced

periodicity in the two directions perpendicular to the direction of flow. A simulation

1The N = 2, 916, N = 6, 912 and N = 16, 384 results were not in the original thesis. Around 1990
computer performance was only a fraction of what it is today.
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Figure 4.2: The N = 256 system at Pe = 100 (left) and the N = 864 system at

Pe = 100 (right). For clarity, the particles are drawn with reduced diameter. White

particles are in the simulation cell, blue particles are periodic images.

Size N Size N
1× 1× 1 256 2× 1× 1 512
11
2
×1×1 384 3× 1× 1 768

13
4
×1×1 448 4× 1× 1 1024

Table 4.1: Number of particles in the elongated systems investigated. The sizes are

with respect to a unit cubic simulation cell with N = 256.

has been performed where the Péclet number, the density and the volume were

constant. The dimensions in the y and z directions were scaled by a small amount,

such that the surface area, and thus the volume, remained constant. The scaling is

described by

L′
x = Lx;L

′
y = Ly(1 + ǫ);L′

z = Lz/(1 + ǫ) (4.1)

where ǫ is a small stretch factor. The simulation was repeated at seven different

scaling sizes ǫ.

The scaling sizes are chosen such that the maximum stretch factor corresponds to

the elimination in the z direction of one string of any layer, and to the addition of

one layer in the y direction. The simulation was repeated at four different shear

rates. The particle number was fixed at N = 256. Results for the stretched systems

at Pe = 150 are given in table (4.2). At this Péclet number the material functions

and P6[cos θ] show a dependence on the stretch factor. The string lattice rotates to
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Figure 4.3: Shear stress as a function of the system length at Pe = 150 (left) and

order parameter P6[cos θ] as a function of the system length at Pe = 150. (right). For

comparison the values cubic N = 500 and N = 864 systems are included.

be able to fit within the periodic yz boundaries. At the maximum stretch factor

this could not be accomplished and hexagonal ordering and a disordered phase

coexist. Results for N2 as a function of ǫ at different Péclet numbers can be seen

in figure (4.4). An interesting Péclet number is 80, which according to figures (3.6)

and (3.9) is the approximate Péclet number at which the layer-hexagonal transition

occurs in an unstretched system. At this Péclet number, a layered ordering at ǫ =
0 exhibits hexagonal ordering at ǫ = 0.025. At Pe = 50 the effects of stretching

are considerably smaller, but still significant. Rotation of layers is suggested in

some systems but could not be firmly established. At Pe = 10 N2 is, within errors,

independent of the stretch factor.

In figure (3.4) we showed that hexagonally stacked strings can adopt different ori-

entations with respect to the yz plane, and in figure (4.2) we see that this tilting

can be the consequence of the breaking up into strings of mildly curved layers that

propagate coherently over the periodic system boundaries. Permitted orientation

angles of the hexagonal array in stretched or unstretched systems can be derived

using a simple geometrical model, in which a layer of strings propagates continu-

ously through the periodic yz boundaries. This requirement implies for the layer

orientation α

sinα =
mL0

Lz

;m ∈ N, (4.2)

where L0 = d
√
3/2 is the plane - plane distance with d being an effective hard

sphere diameter which was taken from the table in section (2.6) as d = 0.98 at

T ∗ = 2.5. We could not find a simple criterion to determine the value of m in equa-

tion (4.2) a priori. Also, a single system may attain hexagonal configurations with
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ǫ N N2 P6[cos θ] αs αc m
0.000 7.5 −27.1 0.37 30 36.7 4
0.025 7.9 −19.2 0.34 5 7.9 1
0.050 8.6 −14.1 0.39 15 16.9 2
0.075 9.0 −6.4 0.38 14 17.4 2
0.100 9.1 −1.1 0.35 18 17.8 2
0.125 8.8 −1.2 0.38 25 29.4 3
0.150 10.6 4.0 0.35 39 44.5 4
0.175 8.8 19.4 0.27 5 9.1 1

Table 4.2: Results for stretched systems at Pe = 150. The ǫ = 0.175 system had

incomplete hexagonal ordering. αs is the orientation angle from simulation, and αc

is the orientation angle from calculation.

different orientations with respect to each other, resulting in a grain boundary

where they collide (vide infra). We therefore fitted m to our data. In table (4.2) a

comparison is made between observed and calculated angles. The calculated angles

appear to be systematically higher than the observed ones. This might be due to the

soft nature of the particles, since they may attain a more favourable configuration

by getting closer than the hard sphere diameter. If one orientation of the hexagonal

state is less stable than another orientation, the less stable could transform into

the more stable one, but we did not observe such transformation. A transformation

would probably involve a complete disruption of the existing hexagonal structure.

Such disruption will form a great barrier to the transformation.

4.3 Shear induced ordering in large systems

As to have a better idea whether the hexagonally ordered state actually is not an

artefact of finite size or periodic boundary conditions, or both, BD simulations were

done with a large number of particles. For example a N = 6, 912 system corresponds

to 3 × 3 × 3 times the size of a N = 256 system, or to 2× 2 × 2 times the size of the

N = 864 system. Considering the table of actual dispersions corresponding to the

reduced units T ∗ = 2.5 and η∗ = 2, 868 as presented in section (2.7), which gives

actual diameters of the order of 10µm for dispersed particles in solvents like water

or benzene, the cubic N = 6, 912 system corresponds to a cube with an edge of

circa 200µm, which is of the order of the gap width in some rheometers. Hence the

system could exhibit properties of a bulk dispersion. An objection would of course

be that the gap width is of different order than the distance that a sheared particle

travels in the flow direction - one needs to compare the gap width to for instance

a median circumference of a cone or plate. Figure (4.5) presents a snapshot of the

configuration together with the kx=0 projection of the structure factor S(k, γ̇) at

54



ARTEFACTS IN BROWNIAN DYNAMICS

-30

-25

-20

-15

-10

-5

 0

 5

 0  0.05  0.1  0.15  0.2

N
2

Stretch factor

Pe=10

Pe=50

Pe=80

Pe=150

Figure 4.4: Second normal stress difference N2 as a function of stretch factor at

various Péclet numbers.

Pe = 100. As can be seen, the tendency of the particles to organise themselves in

strings compares to that of the N = 864 systems in figure (4.2). Also the values

〈Txy〉 ≈ 10.1 and 〈P6〉 ≈ 0.22 in the N = 6, 912 system, correspond well to the results

for the N = 864 system at Pe = 100. Strings will be continuously created and

annihilated, but still do evolve in the N = 6, 912 system. This is reflected by kx=0

projection of the structure factor S(k, γ̇) in figure (4.5) where two-fold symmetry

dominates (weakly visible) six-fold symmetry.

An alternative hypothesis to the strings being stabilised by the boundary condi-

tions, would be that strings appear when the Péclet number is sufficiently high for

the system to become a non Brownian dispersion, and that the boundary conditions

only artificially stabilise the strings in small systems, for instance in the N = 256
system that exhibits full hexagonal ordering at Pe = 100. In a large system string

formation can start at different positions in the yz plane, and grain boundaries

are formed where growing but misaligned hexagonal patches collide. Even in the

N = 6, 912 system, a particle may enter the wake of its own string through the pe-

riodic boundary condition in the flow direction providing an artificial stabilisation

of strings. The question is that if there would be a system size at which strings no

longer form, how large that system would be. Consequently, we do not know with

certainty the level of the second Newtonian plateau, though it seems reasonable

to hypothesise that this plateau starts just beyond the Péclet number that corre-

sponds with the maximum value of Txy in figure (3.9) or with the Péclet number

from which the value of P6 starts increasing steeply in figure (3.6).
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Figure 4.5: To the left, an instantaneous configuration with N = 6, 912 particles at

φ = 0.52 and Pe = 100. For clarity, the particles are drawn with reduced diameter.

White particles are in the simulation cell, blue particles are periodic images. To the

right, the kx=0 projection of the structure factor S(k, γ̇).

To assess the probability of above mentioned hypothesis, BD simulations were done

with N = 16, 384, which corresponds to 4×4×4 times the size of the N = 256 system,

or in case of practical solvents like water or benzene, to a cube with an edge of circa

260µm. Figures (4.7), (4.8) and (4.9) present configuration snapshots in which can

be seen that the tendency of particles to organise themselves in compares to that

of the N = 864, N = 2, 916 or N = 6, 912 systems in figures (4.2) and (4.6). Figure

(4.1), showing a value 〈Txy〉 ≈ 10 for the structure in figure (4.9), suggests that

grain boundaries lower shear stress to a level for a smaller system at lower Péclet

number in which no (hexagonal) ordering will develop that spans the simulation

box. Judging from figure (4.9) the length scale of ordered regions indeed is not

smaller than the edge of a N = 256 system, which explains why we have only seen

global ordering in the N = 256 systems at this density and shear rate.

4.4 Discussion

For the system studied in this chapter, approximate extreme values can be given

for parameters such as particle number, Péclet number and run length, in order to

perform a proper BD simulation so that no finite size effects are expected. Results

obtained from such simulations can be compared with experiments performed on

real dispersions. Systems containing less than about N = 100 particles are too
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Figure 4.6: Instantaneous configurations with N = 2, 916 (left) and N = 6, 912 (right)

particles at φ = 0.52 and Pe = 150. For clarity, the particles are drawn with reduced

diameter. White particles are in the simulation cell, blue particles are periodic im-

ages. A hexagonal phase, a layered phase and grain boundaries between them, are

visible in the N = 6, 912 system.

small for calculation of any property, irrespective of the Péclet number. In a typical

run, up to 5105 states may be needed before a stationary state is reached. We already

argued in chapter 3 that short simulations might be misleading since at any time

the configuration may still be correlated to the initial configuration. Moreover, one

may only sample a small part of the long term fluctuations. Consequently good but

deceptive statistics will be obtained. The signal to noise ratio deteriorates at Péclet

numbers which are below unity, which is a common feature of non equilibrium

simulations at weak disturbing fields45. It can be concluded that for the particular

system studied here only simulation results obtained in the approximate range of

Péclet numbers 1 to 10 do not suffer from artefacts or excessive statistical noise.

The range of Péclet numbers useable for our system is approximately one decade

using N = 256 particles. BD simulations in the literature53,54 are stretched beyond

those limits.

From the results obtained it can be concluded that in small systems the Péclet

number at which hexagonal ordering starts to become global, is a function of the

size of the system. Hexagonal ordering might not be global in large systems. Let

us assume that the number of strings which can be created at some time increases

with the yz area. If the yz area is sufficiently small, it is likely that only one string

will be formed. Around this first string, others form, and the cluster reaches the
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edges of the system before other clusters can be formed. In a large system sev-

eral clusters of strings evolve, which may be skew with respect to one another.

When these clusters grow they will collide, which results in several isolated clus-

ters separated by a kind of grain boundaries. Figure (4.5) supports this view since

at N = 6, 912, the shear stress Txy at Pe = 100 is close to Txy at Pe = 150. Due to

the friction between the colliding clusters there might be a continuous creation and

annihilation of these clusters, a behaviour comparable to that observed in smaller

systems containing a few hundred particles at a Péclet number below the tran-

sition to a string phase. Evans and Morriss44,45 drew attention to the fact that

early non-equilibrium molecular dynamics simulations42,52,100 used a thermostat

assuming a linear streaming velocity profile. Non equilibrium molecular dynamics

simulations involving such thermostats exhibited string like ordering. A thermo-

stat which made no assumption on the streaming velocity profile was introduced

by Evans and Morriss44, and their simulations did not indicate any string ordering

at all. An improved version of the thermostat of Evans and Morris was introduced

by Loose and Hess69, and string ordering was observed again. The BD simulations

presented here do not suffer from such thermostatting problems. Since particle

mass is ignored, a particle cannot accumulate velocity, so the ensemble cannot heat

up or cool down. Thermostatting is accomplished by the application of stochastic

forces, so the ensemble automatically has the correct average temperature at all

time steps.

In the BD simulations the Lees-Edwards boundary conditions may facilitate string

and layer formation. These boundary conditions force the particles to move affinely

at the boundaries in the velocity gradient direction. Therefore the Lees-Edwards

boundary conditions would disrupt an immobile configuration, such as a gel-like

state. These boundary conditions will also disrupt any string which is not in a

plane perpendicular to the velocity gradient direction. The simulation using the

elongated boxes shows that the hexagonal ordering may be artificially stabilised by

the periodicity in the direction of flow. For larger box sizes this effect diminished,

but the importance of the yz periodicity indicates that the results for the elongated

boxes are not reliable.
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Figure 4.7: An instantaneous configuration with N = 16, 384 particles at φ = 0.52
and Pe = 10. The particles are drawn with a reduced diameter, small enough to ob-

serve ordering throughout the simulation cell. White particles are in the simulation

cell, blue particles are periodic images.
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Figure 4.8: An instantaneous configuration with N = 16, 384 particles at φ = 0.52
and Pe = 100. The particles are drawn with a reduced diameter, small enough to ob-

serve ordering throughout the simulation cell. White particles are in the simulation

cell, blue particles are periodic images. Layers and grain boundaries are visible.
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Figure 4.9: An instantaneous configuration with N = 16, 384 particles at φ = 0.52
and Pe = 150. The particles are drawn with a reduced diameter, small enough to

observe ordering throughout the simulation cell. White particles are in the simu-

lation cell, blue particles are periodic images. Hexagonal phases, layers and grain

boundaries are visible.
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5

Rheological behaviour at low shear
rates

In chapter 3 we introduced a simplified model of a colloidal dispersion, in which hydro-

dynamic interactions between particles are neglected. In chapter 4 a range of parameter

values was indicated for which results of a Brownian dynamics (BD) simulation of this

model system do not exhibit finite size effects. In this chapter we investigate whether our

model calculations, in a parameter regime where no finite size effects are expected, are con-

sistent with trends seen in recent theory and experiments on hard sphere dispersions. To

this end we report on the rheological behaviour of our model system. We compare trends in

the results with trends observed in experimental data for some real dispersions. We com-

pare results with the predictions of a recent theory for the shear rate dependent viscosity

in a system of interacting Brownian particles. In this theory, hydrodynamic interactions

between particles are neglected, as they are in our model calculations. We also compare

results with a recent theory for the hydrodynamic contribution to viscosity in dense disper-

sions.
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5.1 Introduction

In this chapter we report results we obtained from Brownian dynamics simula-

tions of the model system described in chapter 3. We restrict ourselves to a range

of parameter values for which we do not expect finite size effects. These finite size

effects were discussed in chapter 4. We compare trends in our results with trends

observed in experimental data for some real dispersions. If a system of interacting

Brownian particles is subjected to shear flow, the pair distribution function will

deviate from the equilibrium pair distribution function. A microscopic theory for

the non equilibrium stress must take this shear rate dependence of the pair distri-

bution function into account. This was done for semi dilute dispersions not too far

from equilibrium by Ronis83,84, Dhont et al.33 and Dhont34. Similar work for simple

fluids was performed by Schwarzl and Hess89. Since Dhont argues that his theory

might also apply to concentrated systems, we compare our viscosity data with his

theory.

5.2 Simulation details

We used the BD method as described in detail in chapter 2. We used the repulsive

Lennard Jones potential as discussed in chapters 3 and 4 as the direct interaction

potential. Hence the particles are strictly repulsive. Throughout this chapter, we

use reduced units as described in section (2.7). We performed simulations at two

volume fractions φ = 0.42 and φ = 0.52. These volume fractions were calculated

using the Lennard Jones parameter σ as an effective hard sphere diameter. The

phase point of the system was fixed by choosing the temperature T ∗ = 2.5 and

the solvent viscosity η∗ = 2, 868. The choice for the integration time step ∆t was

described in chapter 3. Simulations were performed using N = 256 and N = 864
particles1. A simulation run started from an ordered face centered cubic config-

uration. This configuration was allowed to equilibrate at zero shear during 2.5104
states. Next, the shear rate was increased gradually in 2.5104 states. After the shear

rate reached its maximum value, 2.5105 states were generated as to let the sample

reach a stationary state. Finally 5105 states up to 16.5106 states for low Péclet num-

bers, were generated during which sampling of the stress tensor was performed. In

order to assess reproducibility for the N = 256 system each run was performed in

duplo, or in triplo at Pe = 1. The accuracy of the viscosity obtained by this scheme

is of the order of one percent. We need this accuracy to compare our results with a

recent theory of Dhont34.

1The N = 864 results were not in the original thesis.
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5.3 Shear rate dependent stress tensor components

In figure (5.1) we plotted the shear stress as a function of Péclet number at volume

fraction φ = 0.52. This figure resembles the shear stress versus shear rate plots for

real dispersions, see for example figure 3 in reference96, in which Van der Werff

and De Kruif report on the viscosities of submicron sterically stabilised silica dis-

persions.
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Figure 5.1: Stress tensor diagonal components as function of Péclet number at

φ = 0.52 (left) and stress tensor diagonal components as function of Péclet num-

ber (right).

Figure (5.1) also shows the shear rate dependent diagonal components of the stress

tensor T at φ = 0.52. At Pe < 0.5 the accuracy of the results is not good enough to

show whether the three components are different, that is, we cannot tell whether

the system deviates from an isotropic state. At Pe > 0.5 we see the trend in the

stress tensor diagonal components Tyy < Txx ≈ Tzz that we attributed to layer

formation in chapter 3. we see that the first normal stress difference has posi-

tive values, and that the second normal stress difference has negative values. The

trend in our data for the first normal stress difference follows the trend in experi-

mentally obtained data for a polydisperse silica dispersion105. It can be seen that

despite very long simulation runs, the accuracy of the normal stress difference is

less than that in the shear stress. In chapter 4 it was already pointed out that nor-

mal stress difference is more sensitive to variations in the microstructure than is

the shear stress. In chapter 3 it was shown that at Péclet numbers of order unity,

very slow structural changes occur. Hence we can expect that we can compute the

shear stress, and thus the viscosity, more accurately than the normal stress differ-

ence. Figure (5.1) also shows that pressure p = −1
3
T : I rises with Péclet number.
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The behaviour for the normal stress difference and the pressure due to the direct

interaction was already discussed in chapter 4.

5.4 Viscosity and structure at low Péclet numbers

In recent publications, Dhont et al.33 and Dhont34 derive an expression for the

shear rate dependent stress tensor for a system of interacting Brownian particles,

with neglect of hydrodynamic interactions. This expression is valid up to second or-

der in concentration. The shear rate dependent structure factor S(k; γ̇) is calculated

from the two particle Smoluchowski equation in shear flow. Dhont et al. show that

the viscosity will vary linearly with
√
γ̇ in a range of shear rates, in accordance with

results of Ronis83,84. It is argued that this non-Newtonian behaviour is due to the

non-analytic behaviour of the deformation of the structure factor in shear flow. The

structure factor shows boundary-layer behaviour at zero wave-vector; the width

of the boundary layer varies as the square root of the shear rate. It is suggested

that at high concentrations, where hydrodynamic interactions between particles

cannot be neglected, the viscosity will vary linearly with
√
γ̇ in a range of shear

rates as well. Van der Werff et al.97 provided experimental support for the theory

of Dhont by measuring the shear rate dependent viscosity of three hard sphere

dispersions of sterically stabilised silica particles in cyclohexane. It was found that

in between two Newtonian plateaus at very low and very high shear rates respec-

tively, the viscosity decreases linearly with
√
γ̇ for a wide range of shear rates. This

behaviour was found in dispersions with volume fractions ranging from φ = 0.20
up to φ = 0.58. Since at these high concentrations hydrodynamic interactions can-

not be neglected, support is provided for Dhont’s expectation for his results to hold

in dense systems as well. Moreover, since the model calculations in paper33 were

carried out using an electrostatic repulsion between particles, Van der Werff et al.

suggest that the decay of the viscosity, linear with
√
γ̇, might not be affected by the

nature of the non hydrodynamic interaction between particles. The configuration

space Smoluchowski equation which forms the basis of the theory of Dhont is an

appropriate level of description for times which are long with respect to τR = m/β
(equation (2.4)). We used the BD simulation method, which is based on a Langevin

equation. At a sufficiently long times, the results of the Langevin description and

the Smoluchowski description will be identical. Hence we expect in our simulations

a regime of shear rates where the viscosity decreases linearly with
√
γ̇. Figure (5.2)

presents the viscosity from our simulations as a function of
√
Pe at volume frac-

tions φ = 0.52 and φ = 0.42 respectively. At both volume fractions, shear thinning

behaviour indeed is linear in
√
Pe in a range of shear rates, providing support

for Dhont’s expectation that his results hold in dense systems as well. We see in

both figures that a second Newtonian plateau has not yet been reached. Based on

calculations presented in chapter 3 and this chapter, we cannot decide whether

the viscosity value in the second Newtonian plateau η∞ will be finite or vanish
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altogether. In chapters 3 and 4 we saw that the viscosity vanishes as the Péclet

number becomes very large, but in these chapters we entered a regime of Péclet

numbers where the simulation results are in doubt.
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Figure 5.2: Relative viscosity ηr as a function of
√
Pe at φ = 0.52 (left) and φ = 0.42

(right). Line to guide the eye.

The viscosity data at φ = 0.42 does not clearly demonstrate a first Newtonian

plateau. If we could assess the values of both η0 and η∞ , we could check whether

the ‘rate’ of shear thinning in our model system differs from that of a real disper-

sion. We could not establish a first Newtonian plateau by calculating the viscosity

directly from T at Pe ≪ 1 since the signal to noise ratio deteriorated due to the in-

creasing importance of slow structural changes; a point already discussed in chap-

ters 3 and 4. We had to generate 3106 configurations to obtain a good estimate of the

viscosity at Péclet numbers close to unity, and 16.5106 configurations at Pe = 0.1.

We may however establish the existence of a first Newtonian plateau if we could

know the value of the viscosity in the limit of zero shear rate η0. In principle, we

can calculate η0 in our system of Brownian particles using the Green-Kubo rela-

tion21,27,35,43,45 which relates η0 to the fluctuations in the shear stress in a system

at equilibrium

η0 =
V

kT

∫

dtΣ(t) (5.1)

Here Σ(t) is the shear stress correlation function defined by equation (3.2). How-

ever, it turned out that we could not calculate the integral in equation (5.1) since

Σ(t) has a long-time tail at the high volume fractions we used. From the Hansen

and Verlet phase diagram49 for an atomic fluid in which the particles interact

through the a long range Lennard Jones potential, we expect that the equilibrium

system is close to the liquid-solid phase transition at these high volume fractions.
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The fluctuations which accompany this phase transition cause the long-time tail in

Σ(t).

Since we cannot establish viscosity at low shear rates we also cannot accurately

establish the extent of the regime where the viscosity decreases linearly with
√
Pe.

It can however be concluded from figure (5.2) that the width of the interval in

which the viscosity decreases linearly with
√
Pe appears to increase as the volume

fraction decreases, a fact also noticed by Van der Werff97. The theory of Dhont34

predicts, in the range in which the theory is valid, that S(k; γ̇) is not disturbed in

the kx = 0 plane. In figure (5.3) we present planes of S(k; γ̇) at φ = 0.52 and at

Pe = 0, Pe = 1 and Pe = 3. According to figure (5.2), Pe = 1 is within the regime

where the viscosity decreases linearly with
√
γ̇. From figure (5.3) it can be seen

that the kz = 0 plane, which show circular patterns at zero shear rate, deforms to

an ellipsoidal pattern under shear. This can be understood as follows. The simple

shear flow can be considered as a combination of a rotational and an extensional-

compressional component. The extensional axis and the compressional axis are

the principal axes of the rate of deformation tensor. Along the compressional axis,

particles move towards each other. This is exactly what is seen in the kz = 0 planes

in figure (5.3). Along the extensional axis, particles move away from each other. In

reciprocal space the diffraction pattern moves away from the origin k = 0 along the

compressional axis, and moves towards the origin along the extensional axis. Hence

the deformation of a circular pattern to an ellipsoidal pattern. This behaviour of

S(k; γ̇) in shear flow was also observed experimentally by Ackerson et al.4.

We conclude that figure (5.3) shows that at Pe = 1, the structure in the kx = 0, kz =
0 planes is not significantly disturbed with respect to the equilibrium structure.

This means that either the layer formation is too weak to be detected, or that layer

formation is absent. The static structure factor starts deviating significantly from

the equilibrium value when the shear rate increases. According to figure (5.3), Pe =
3 is just beyond the regime where the viscosity decreases linearly with

√
γ̇. The

ellipsoidally deformed kz = 0 plane now clearly shows four maxima. The maxima

along the line ky = 0 correspond to evolving layers perpendicular to the y axis. The

other two maxima correspond to the deformation of the structure by the shear flow

that makes particles collide along the compression axis with adjacent layers in the

direction of the velocity gradient. The kx = 0 plane at Pe = 3 indicates a slight

deformation from the equilibrium value. The pattern splits into two halves which

are centrosymmetric in the origin k = 0. This is indicative of the onset of formation

of layers in the yz plane which are perpendicular to the velocity gradient direction.

The trend in the stress tensor diagonal components Txx ≈ Tzz;Tyy < Txx supports

this view. Thus we see this onset of layer formation roughly at Péclet numbers of

O(1) where the convective time scale starts outweighing the diffusive time scale,

that is a2γ̇ ≥ D0.
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Figure 5.3: Planes of S(k; γ̇) of the φ = 0.52 system. From left to right, Pe = 0, Pe = 1
and Pe = 3. At the top, the kz = 0 plane. At the bottom, the kx = 0 plane.

5.5 Hydrodynamic contribution to viscosity

We argue in this chapter that we see the onset of layer formation in our simulations

at Péclet numbers of order O(1). In chapters 3 and 4, we observed that the viscos-

ity decreases, due to packing geometry, in the regime of Péclet numbers where the

particles adopt a layered or even a hexagonal structure. We observed in simula-

tions at intermediate Péclet numbers where the particles clearly start organising

themselves in layers, that the particles already adopt a more or less hexagonal

ordering within the layers. This is consistent with the results of Hoffman57, and

opens the possibility to estimate the hydrodynamic contribution to the relative vis-

cosity ηHr using the results of Van den Brule28. Van den Brule calculated viscosity

for hexagonally packed layers stacked in the direction of the velocity gradient. This

calculation applies to hard sphere systems, in which the hydrodynamic interactions

are approximated by the lubrication forces. At high volume fractions, this approx-

imation is justified. From the table in section (2.6) it follows that a Lennard Jones

sphere has an effective hard sphere diameter d = 0.98 at T ∗ = 2.5, hence at φ = 0.52
we must consider a reference hard sphere system at φ = 0.49. The two geometrical

parameters which describe the hexagonal packing are the layer to layer distance λ
and the nearest neighbour distance within a layer κ. Both λ and κ are relative to a
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hard sphere radius. From our simulation data we estimate λ, and we find κ from

φ =
8π

3κ2λ
√
3

(5.2)

For the precise derivation of the expressions used here we refer to Van den Brule’s

work. We describe here the procedure so the reader may reproduce the results (see

Appendix A1). We denote the coordinate on the direction-of-flow axis of particles

moving in adjacent layers by the dimensionless variable q. We will use the func-

tion ν(κ) defined such that the product ηγ̇ν(κ) is the shear stress from rotation of

particles within the same layer as a test particle

ν(κ) =
πω

√
3

2κλ

(

κ ln
κ

κ− 2
− 2

)

(5.3)

where ω is the angular velocity of the particles. Note that there is no other contri-

bution to shear stress from particles within the layer since translational velocity is

uniform in Van den Brule’s approximation.

The calculation of relative viscosity proceeds as follows. First, the angular velocity

ω is determined by the fact that the stress tensor is symmetric, that is, Txy = Tyx,

leading to a condition that equates the shear stress due to rotation of particles in

the same layer as the test particle, to contributions to Tyx from particles in adjacent

layers by squeezing motion, shearing motion and rotation

2π√
3

∫ 3

4

− 3

4

dq f4(q)

(

λ

κ
− λω

κ2f1(q)
− q2ω

λf1(q)

)

= ν(κ), (5.4)

where

f0(q) = q2 +

(

λ

κ

)2

+
3

16
; f1(q) =

√

f0(q) (5.5)

and

f2(q) = f1(q)−
2

κ
; f3(q) = f1(q) ln

f1(q)

f2(q)
; f4(q) = f3(q)−

2

κ
(5.6)

Solving above equation numerically yields the angular velocity. Then the relative

viscosity can be calculated from

ηHr = ν(κ) +
2π√
3

∫ 3

4

− 3

4

dq

(

3λ

κ3
h1(q)−

λ

κ
h2(q) +

ω

λ
h3(q)

)

, (5.7)

where

h1(q) =
q2

f0(q)f2(q)
;h2(q) = q2

f4(q)

f0(q)
;h3(q) = q2

f4(q)

f1(q)
. (5.8)

In above expression for the relative viscosity, the particles in adjacent layers con-

tribute by squeezing motion (the h1 term), by shearing motion (the h2 term) and by
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rotation (the h3 term). Figure (5.4) presents the results of the calculations. As can

be seen it is important to correct for the effective hard sphere radius of a Lennard

Jones sphere as the φ = 0.49 system behaves differently than the φ = 0.52 system.

As an example to estimate the relative viscosity due to lubrication forces, we con-

sider the N = 256 system at Pe = 50 presented in figure (3.5) in which we observe

the formation of 7 layers; then in the φ = 0.49 hard sphere reference system the

inter-layer spacing would be λ = 1.85 from which follows ηHr = 4.26 if these layers

were perfectly hexagonally ordered.

The Van den Brule approximation can explain shear thinning and shear thickening

from purely geometrical arguments, as can be seen in figure (5.4). Shear thicken-

ing at high shear rates can be explained by particles packing closer together as

layers separate. Note that at the value of λ we find in our system at Pe = 50, we

are still well away from the shear thickening regime. As shear thickening is an

effect thought to be induced by increasing strength of hydrodynamic interactions,

the calculation in this section is an argument that the neglect of hydrodynamic

interactions in a BD simulation of a dense dispersion at low or moderate shear

rates, of particles interacting through a steeply repulsive interaction, still leads

to a structure that is consistent with that of an actual dispersion of (nearly) hard

spheres.
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Figure 5.4: Angular velocity of dispersed particles (left) and relative viscosity due

to lubrication forces (right) calculated following Van den Brule’s formalism28.
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5.6 Discussion

When we compare our viscosity data with the experimental data for hard sphere

dispersions as reported by Van der Werff et al. 97, we observe that our computed

viscosities are much smaller than the experimentally obtained ones. The repulsive

Lennard Jones potential we used is very steep. In that sense is our direct interac-

tion comparable to the direct interaction of hard spheres. An important difference

between the hard sphere system and our Lennard Jones model is that the hard

sphere direct interaction does not contribute directly to the stress15,24. In the hard

sphere dispersion, there is a contribution of hydrodynamic interactions between

particles to the stress, and a direct contribution of Brownian motion to the stress.

Our model does not incorporate hydrodynamic interactions, and the only contri-

bution to the stress comes from the direct interaction, as was argued in section

(2.3). Hence the hard sphere system and our Lennard Jones model are in a sense

complementary.

It appears to be troublesome to establish either a first or a second Newtonian

plateau in the viscosity. The first plateau cannot be established due to slow struc-

tural changes that impede direct calculation of viscosity from the stress tensor, but

also from indirect calculation using a Green-Kubo relation. The second plateau can-

not be established since it occurs in a regime that is probably dominated by finite-

size effects. The one thing that we can establish with certainty, is that the model

system shows shear thinning behaviour. We established in this chapter that the

viscosity in our model system varies linearly with
√
γ̇ in accordance with a recent

theory of Dhont for interacting Brownian particles, in absence of hydrodynamic in-

teraction, which has been supported by experimental results from Van der Werff

on dispersions of hard silica spheres. We see that just beyond the linear regime,

the onset of layer formation can be detected in our model system. Within the linear

regime layer formation is close or below the threshold of detection, if not absent.

In the hard sphere system investigated by Van der Werff et al.97 no layer forma-

tion could be detected. This was concluded from neutron scattering experiments

on a hard sphere system in shear flow98, and from Stokesian dynamics simula-

tions by Bossis and Brady18,20. The theory of Dhont may provide an alternative for

BD simulations of our model system if one is interested in the material functions

at low shear rates for systems at low concentrations. At low shear rates, the BD

method fails since the signal to noise ratio deteriorates. One can numerically solve

the shear rate dependent structure factor S(k, γ̇) from the Fourier transformed two

particle Smoluchowski equation in shear flow. Once S(k, γ̇) is known, one can cal-

culate the stress tensor30,33.

At high volume fractions, lubrication forces will be the dominant interaction be-

tween the hard spheres. Since lubrication forces diverge when the particles tend to

touch, the viscosity rises steeply with the volume fraction. Since we did not incor-
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porate hydrodynamic interactions between particles in our model, we can expect

that the computed viscosities are smaller than the experimentally obtained ones.

Comparison with the work of Van den Brule shows that the shear rates we ap-

plied in this chapter should still be well below the shear thickening regime which

is thought to be a regime where hydrodynamic interactions dominate the structure

of a dense dispersion. Combining these results one can hypothesise that at high

volume fractions, when neglecting hydrodynamic interactions, a repulsive poten-

tial at least leads to a structure that is consistent with that of an actual dispersion

of (nearly) hard spheres at low shear rates, although in general of course no quan-

titative prediction for material functions could be obtained. The situation is similar

to that of simple fluids, where equilibrium structure can be approximated by that

of a hard sphere reference system in case the interaction potential is steeply repul-

sive when particles approach each other closely.
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6

Rheological behaviour of
agglomerating dispersions

In this chapter we present an explorative Brownian dynamics simulation study of systems

of attractive spheres. We report on the temperature and shear rate dependent behaviour of

systems of both repulsive and attractive spheres. We choose a range of temperatures such

that the attraction varies from weakly to moderately attractive. We observed that there is

only a slight difference in behaviour between systems of repulsive spheres and systems of

weakly attractive spheres, but a significant difference in behaviour between the systems of

repulsive spheres and the systems moderately attractive spheres. We observed differences

in the microstructure between systems of repulsive spheres and systems of moderately

attractive spheres. We conclude that with Brownian dynamics, one can only study small

systems with N = 256 in which the attractive potential depth is not larger than O(kT ).
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6.1 Introduction

The nature of attractive forces in colloidal dispersions is manifold86. Two examples

are the weak flocculation of particles in the secondary minimum of the DLVO po-

tential, and depletion flocculation caused by adding a polymeric component to an

otherwise stable dispersion. A third example, which is of concern in this chapter,

is attraction in the primary minimum of the direct potential. In this case particles

can be either weakly, id est reversibly, aggregated or strongly aggregated. In the

latter case diffusion may eventually be blocked.

Studying the behaviour of dispersions by means of simulation has as an advantage

that one can study the influence of a single parameter, such as the concentration

or the temperature on the behaviour of a model system, without having to consider

the effect of these parameters on the nature of the direct interaction. In real dis-

persions there are much difficulties when systems are studied in which dispersed

particles interact through a potential which is not a hard sphere interaction. One of

these problems is that it is sometimes difficult to estimate the order of magnitude

of Van der Waals attraction between particles near contact31. Furthermore, the di-

rect interaction potential may be concentration dependent. This is an important

argument for the choice of hard sphere dispersions as a model system98.

The purpose of this chapter is to perform an explorative Brownian dynamics sim-

ulation study of systems of attractive spheres. We modeled the direct interaction

in both the system of repulsive and attractive spheres by a Lennard Jones po-

tential as defined by equation (2.49). We have studied the shear rate dependent

behaviour of the system of repulsive Lennard Jones spheres in chapters 3, 4 and

5, hence we have some experience from which to interpret data for the system of

attractive spheres. In order to obtain a repulsive sphere, we cut off the potential

at interparticle distance rcut = 6
√
σ. In order to obtain an attractive sphere we cut

off the potential at rcut = 2.5σ. We considered a range of temperatures such that

the reduced temperature ranged from T ∗ = 0.25 up to T ∗ = 2.0. This means that

the effective depth of the potential minimum for attractive spheres ranged from

−4kT up to −0.5kT . Since the Brownian forces give the particle a kinetic energy

of order kT , we expect that there is only a slight difference in behaviour between

the systems of repulsive spheres and the systems of attractive spheres if the effec-

tive potential minimum equals −0.5kT , whereas we expect a marked difference in

behaviour if the effective potential minimum equals −4kT . In real dispersions the

potential minima can be as deep as31 −14kT . In these strongly aggregated systems

a particle doublet will almost certainly not be annihilated by Brownian motion. The

annihilation of a doublet in our systems is still likely, hence we prefer to label our

systems of attractive spheres as moderately attractive when the effective potential

depth is −4kT and weakly attractive when the effective potential depth is −0.5kT .
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6.2 Simulation details

We used the Brownian dynamics method as described in detail in chapter 2. We

will interpret the Lennard Jones parameter σ, which is the distance at which the

interaction energy is zero, as an effective hard sphere diameter which we use to

calculate volume fractions. Throughout this chapter, we will use reduced units as

described in section (2.7). We performed simulations at volume fraction φ = 0.42.

This volume fraction was calculated using the Lennard Jones parameter σ as an

effective hard sphere diameter. The solvent viscosity was fixed at η∗ = 2, 868 for

comparison with material from previous chapters. We performed simulations at

temperatures T ∗ = 0.25, 0.5, 1.0 and 2.0 respectively. Hence effectively the depth

of the potential minimum for attractive spheres ranged from −4kT at T ∗ = 0.25
up to −0.5kT at T ∗ = 2.0. For comparison with results in previous chapters we

ran some simulations at T ∗ = 2.5, which corresponds to a potential minimum of

−0.4kT . From the Hansen and Verlet phase diagram49 for an atomic fluid in which

the particles interact through the a long range Lennard Jones potential we expect

an equilibrium system of attractive spheres at φ = 0.42 to be fluid-like at T ∗ = 2.0
and T ∗ = 1.0, and to be solid-like at T ∗ = 0.5 and T ∗ = 0.25. The choice for the inte-

gration time step ∆t was described in chapter 3, so we used a different value for ∆t
at each temperature. All simulations were performed using N = 256 particles. The

simulation procedure was identical to the one we discussed in chapters 3, 4 and 5.

A simulation run started from an ordered face centered cubic configuration which

was allowed to equilibrate at zero shear during 2.5104 states. Next, the shear rate

was increased gradually in 2.5104 states. After the shear rate reached its maximum

value, we let the sample reach a stationary state in 5104 states. Finally 2105 states

were generated during which sampling was performed. Thus the elapsed time in a

simulation run is 3105∆t.

6.3 Rheology of agglomerating spheres

In figures (6.1) and (6.2) we present the shear rate and temperature dependent

relative viscosity ηr for the repulsive and the attractive spheres, respectively. We

see that in both the repulsive and the attractive systems the viscosity at a constant

Péclet number increases as the temperature decreases. We also see that the viscos-

ity of the system of repulsive spheres at a given temperature is smaller than that

of the system of attractive spheres at the same temperature and Péclet number. In

figure (6.3) we present ηr as function of
√
Pe as was done in chapter 5.
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Figure 6.1: Temperature dependent relative viscosity as a function of the Péclet num-

ber for a system of repulsive spheres (left) and shear rate and temperature dependent

viscosity for a system of attractive spheres (right).

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

 0.5  1  1.5  2

S
tr

e
ss

Pe

R Txx
R Tyy
R Tzz
A Txx
A Tyy
A Tzz

-1.5

-1

-0.5

 0

 0.5

 1

 0.5  1  1.5  2

S
tr

e
ss

Pe

R N11
R N22
A N11
A N22

Figure 6.2: Stress tensor components (left) and normal stress difference (right) as

function of the Péclet number in a system at T ∗ = 2.5 and φ = 0.52.

Here we have complemented the data for repulsive spheres at T ∗ = 2.5 and φ = 0.52,

as presented in figure (5.2), with data for attractive spheres1. The data clearly sug-

gest a linear dependence of ηr on
√
Pe, as predicted by Dhont33,34 and in accordance

with results of Ronis83,84, in both the repulsive as well as in the attractive system.

1The T ∗ = 2.5, φ = 0.52 data for attractive spheres were not in the original thesis.
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The data support the suggestion97 that this linear decay does not depend on the

nature of the non hydrodynamic interaction between particles. In figure (6.2) we

also show that in the system of attractive spheres the trend in stress tensor diago-

nal components Tyy < Txx ≈ Tzz can be seen as was discussed in chapters 3 and 4.

This trend is indicative of layer formation.

In figure (6.4) we show the kz = 0 planes of S(k, γ̇) for both the repulsive and at-

tractive system from figure (6.2) at Pe = 1.5 which is just beyond the linear regime

in both systems. We see in figure (6.4) that the attractive system shows relatively

stronger peaks along the line of compression, indicating a stronger agglomeration

of particles along this line due to the attractive nature of the particles. Following

the reasoning in chapter 5, this means that the attractive spheres exhibit signs of

shear induced ordering at somewhat lower shear rate than the repulsive system,

and therefore the linear regime ends at a lower shear rate in the attractive system

than in the repulsive system. Some preliminary considerations on the rheological

behaviour of attractive silica sphere dispersions can be found in the literature103.

A particle in these dispersions behaves as a hard sphere with a short ranged at-

tractive tail. It was shown103 that, when compared with hard sphere silica disper-

sions, the first Newtonian plateau value of the viscosity is higher in the system of

attractive spheres, and increases steeply with the temperature. It was also demon-

strated that the second Newtonian plateau value of the viscosity in the attractive

silica sphere dispersion and the attractive silica sphere dispersion did not differ

significantly. If shear flow is incepted in the attractive silica sphere dispersion, the

viscosity decreases dramatically with respect to η0, which is ascribed to the disrup-

tion of the equilibrium structure.
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Remarkably, we observe in figure (6.2) that in the repulsive system the stress ten-

sor diagonal components have lower values than in the attractive system, but in

figure (6.2) we also see that at the temperatures and Péclet numbers we studied,

both the first and the second normal stress difference for the system of repulsive

spheres at a given temperature are comparable to those for the system of attractive

spheres. This may be explained by comparable structure of evolving layers in the

repulsive and in the attractive system. Related to this, we can study the pressure

p = −1
3
T : I. In figure (6.4) we compile the results for the shear rate and temper-

ature dependent pressure due to direct interaction for both the repulsive and the

attractive spheres.

Figure 6.4: The kz = 0 plane of S(k; γ̇) of the T ∗ = 2.5, φ = 0.52 system at Pe = 1.5
corresponding to the systems of figure (6.2). Repulsive spheres (left) and attractive

spheres (right).

The behaviour of p was already discussed in chapter 4. At all temperatures, the

pressure increases as the Péclet number increases. We see that in the attractive

system at T ∗ = 0.25 and T ∗ = 0.5, the pressure has negative values which indicate

that the particles in these systems tend to form clusters. Since in our simulations

the system is surrounded by periodic images, this clustering process cannot take

place and the system remains in a metastable configuration. Hence the simulation

results for these systems may be in doubt. We observe in figure (6.5) that p changes

sign at Pe ≈ 4 − 5 in the system of attractive spheres at T ∗ = 0.50. Apparently,

due the shearing the system can leave the metastable state, a phenomenon called

shear induced melting.
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6.4 Long-time diffusion of agglomerating spheres

As was argued in chapter 3, we can calculate a diffusion tensor D according to

equation (3.5). In chapter 3 we observed that Dxx clearly exceeded both Dyy and

Dzz at sufficiently high Péclet numbers. Here we did not consider such high Péclet

numbers, and we observed that the three diagonal components of D are approxi-

mately of equal magnitude. Therefore we calculated a scalar diffusion coefficient D
from D

D =
1

3
D : I (6.1)

In figure (6.6) we present the shear rate and temperature dependent diffusion coef-

ficient D for the repulsive and the attractive spheres, respectively. We can see that

in the equilibrium system of attractive spheres, diffusion has almost completely

vanished. At all temperatures, the value of D increases as the Péclet number in-

creases. In chapter 3 we argued that this increase in D is the result of the effect

that the flow forces particles at different levels in the velocity gradient to pass one

another. Due to the direct interaction, a particle has to move aside while passing

other particles. Therefore there is extra displacement in excess to diffusion. Hence

we want to remark that in shear flow, D is not a pure diffusion coefficient. In fig-

ure (6.6) we cannot detect a significant difference between the system of repulsive

spheres and the system of attractive spheres. Due to the variance in the data, we

cannot detect a clear temperature dependence. However, the results suggest that

this temperature dependence is small, which would mean that the motion of the

particles is not very much influenced by the direct interaction.

6.5 Agglomerating sphere doublet dynamics

We will now focus on the behaviour of doublets. We call two particles nearest neigh-

bours if their distance towards each other is less than some upper bound rp . We

arbitrarily set rp to the distance where the Lennard Jones potential has an inflec-

tion point, hence

rp =
6

√

26

7
= 1.2445... (6.2)

When we inspect figure (3.11), we see that with our choice of rp all doublets are in

the first coordination sphere. The number of nearest neighbours N can be calcu-

lated through

Nn =
6φ

π

∫ rp

0

d3r g(r) (6.3)

In figure (6.7) we present the shear rate and temperature dependent values of Nn

for the repulsive and the attractive spheres, respectively. We see that the number

of nearest neighbours in the system of repulsive spheres at a given temperature is
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smaller than the number of nearest neighbours in the system of attractive spheres

at the same temperature and Péclet number. Again we observe that the effect di-

minishes with the temperature.
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repulsive spheres (left) and the number of nearest neighbours versus Péclet number

for a system of attractive spheres (right).
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Figure 6.8: Shear rate and temperature dependent mean bond lifetimes in reduced

units (left) and shear rate and temperature dependent rate of annihilation (right).

When we study the temperature dependent pair correlation function g(r) defined by

equation (2.40) at equilibrium, we observe that in the system of attractive spheres
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the particles are slightly closer to their nearest neighbours than in the system of

repulsive spheres. We observe in figure (6.7) the general trend that Nn decreases as

a function of the Péclet number. This trend might be indicative of layer formation as

discussed in chapters 3, 4 and 5 since ordering in layers decreases the coordination

number. In figure (6.8) we observe that in the system of attractive spheres at T ∗ =
0.25, Nn increases at Pe = 1 with respect to Nn at equilibrium. This increase in the

number of nearest neighbours is a reproducible effect. The simple shear flow can

be considered as a combination of a rotational and an extensional - compressional

component. The extensional axis and the compressional axis are the principal axes

of the rate of deformation tensor. Along the compressional axis, particles move

towards each other. Along the extensional axis, particles move away from each

other. We expect that in a system of sufficiently strong attracting spheres at a

sufficiently low shear rate, particles can be compressed unto each other as was seen

in figure (5.3), but the attractive interaction prevents particles to move away from

each other. One can legitimately ask why this system flows, and we will address

this question in the discussion.

During a simulation, we kept an administration of all doublets. Therefore we can

calculate the lifetime of a doublet by taking the difference of the time when a dou-

blet is annihilated with the time when the doublet was created. In figure (6.8) we

present the mean lifetime of a doublet at the two lowest temperatures. In calculat-

ing the mean lifetime, we did not consider doublets which existed throughout the

simulation. We see that the mean lifetime of a doublet in an attractive system is

lower than in a repulsive system. The effect is small but appears to be systematic.

We do not consider strongly aggregated doublets. Hence the doublets we consider

in this calculation are loosely aggregated. These loosely aggregated particles can

be pulled away by neighbouring particles. In the repulsive system, particles cannot

pull other particles towards them. In figure (6.8) we also present the number of

doublet annihilations per time step dN/dt. We see, as we expect after inspecting

the mean doublet lifetime graph, that in the attractive system more doublets are

annihilated per time step.

In figure (6.9) we present a plot of the fraction of doublets ν(τ) with a lifetime τ ,

versus τ for an equilibrium system of repulsive spheres and an equilibrium system

of attractive spheres at φ = 0.42 and T ∗ = 2.0. The data in figure (6.9) is normalised

with respect to the total number of registered doublets. There appears to be no

difference in ν(τ) for the repulsive spheres and ν(τ) for the attractive spheres. This

can be expected since the attractive particles are only weakly aggregated at T ∗ =
2.0. We observed however that at all temperatures there is no significant difference

between ν(τ) for the repulsive spheres and ν(τ) for the attractive spheres. We see

in figure (6.9) that most doublets exist only during a short time interval. This is

understandable since the particles in most doublets are initially at a distance close

to rp, and therefore relatively weakly aggregated. Weakly aggregated doublets may

be annihilated within a few time steps due to Brownian motion.
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Figure 6.9: The fraction of doublets ν(τ) with lifetime τ versus τ for an equilibrium

system of repulsive spheres and an equilibrium system of attractive spheres, at φ =
0.42 and T ∗ = 2.0.

6.6 Shear rate dependent structure

We now consider shear induced ordering in the sense of layer or string formation.

This has been the subject of chapters 3 and 4. We see in figure (6.10) that in the

system of repulsive spheres at T ∗ = 0.25, Pe = 10.0 and φ = 0.42, there is a slight

tendency of the particles to group into layers. In figure (6.11) we see however from

S(k, γ̇) that the particles in the system of attractive spheres at T ∗ = 0.25, Pe = 10.0

and φ = 0.42 start arranging themselves in strings which are hexagonally packed

in the yz plane. This ordering is of the same type that was reported in chapters

3 and 4. In figure (6.12) we also present an instantaneous configuration of the

system of repulsive spheres at T ∗ = 0.25, Pe = 10.0 and φ = 0.52. In this system

we observe that the system is in a hexagonally ordered phase. In figure (6.12) we

see furthermore that the system of attractive spheres at T ∗ = 0.25, Pe = 10 and

φ = 0.52 also exhibits string ordering.
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Figure 6.10: Instantaneous configurations at T ∗ = 0.25, φ = 0.42 and Pe = 10. To

the left repulsive spheres and to the right attractive spheres. For clarity, the particles

are drawn with reduced diameter. White particles are in the simulation cell, blue

particles are periodic images.

Figure 6.11: The kx=0 projection of the structure factor S(k, γ̇) at φ = 0.42 and

Pe = 10 for repulsive spheres (left), and for attractive spheres (right). Note the onset

of string formation in the layers in the system with attractive spheres.
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Figure 6.12: Instantaneous configurations at T ∗ = 0.25, φ = 0.52 and Pe = 10. To

the left repulsive spheres and to the right attractive spheres. For clarity, the particles

are drawn with reduced diameter. White particles are in the simulation cell, blue

particles are periodic images.

6.7 Discussion

The shear rate and temperature dependent diffusion coefficient as presented in

figure (6.6) might be understood if one imagines that particle motion is not very

much influenced by the direct interaction. In both the system of repulsive spheres

and the system of attractive spheres, the particles have to push aside other parti-

cles which move at a slower speed in the velocity field. In the system of attractive

spheres, due to the attractive direct interaction, particles form doublets. If two par-

ticles which constitute a doublet have different positions in the velocity gradient,

the shear flow will tend to orient the doublet in the direction of flow. In a concen-

trated system, this shear induced rotation of a doublet is hindered by the presence

of other particles. Hence there is packing of particles due to the rotation of doublets

which are not oriented in the direction of flow. This packing gives an increases in

the shear stress. There is also an increase in the shear stress due to tendency of

the shear flow to break up a doublet which is not oriented in the direction of flow.

Hence at identical conditions, we expect that the system of attractive spheres has

a higher viscosity than the system of repulsive spheres.

In figure (6.7) we observe that in the system of attractive spheres at T ∗ = 0.25, Nn

increases at Pe = 1 with respect to Nn at equilibrium. If we are right in our argu-
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ment that this increase is caused by the fact that the shear flow packs particles,

but cannot drag aggregated particles away from each other, then we may have here

a system with a yield stress. This would mean that the system will not flow at very

low Péclet numbers. If the system of attractive spheres at T ∗ = 0.25 indeed has a

yield stress, than the simulations for this system may be in doubt. In chapter 4

we argued that the Lees Edwards boundary condition cannot be used to simulate

systems in which particles are strongly aggregated by an attractive potential since

these boundary condition force shearing motion at the boundaries in the velocity

gradient direction, thus effectively disrupting the structure.

In chapter 4 we showed that a system of repulsive spheres at φ = 0.52 and T ∗ = 2.5
starts to attain hexagonal ordering at Pe ≈ 80. We observe that the same type of

ordering evolves at Pe ≈ 10 in both the repulsive and system of attractive spheres

at φ = 0.52 and T ∗ = 0.25. The shear rate g at which hexagonal ordering begins to

evolve at T ∗ = 0.25 system is much smaller than the shear rate at which hexag-

onal ordering begins to evolve at T ∗ = 2.5. We accredit this remarkable decrease

to the fact that the Brownian force diminishes as the temperature drops. Kink

instabilities are thought to be a destabilising factor for strings45. The Brownian

force induces kink instabilities in the strings, and the kinked string can be annihi-

lated by the shear flow. We have shown in chapter 3 that the hexagonal structure

evolves even at very low Péclet numbers if the Brownian force is removed from

our model. At φ = 0.42 however, we see that the system of repulsive spheres is not

yet hexagonally ordered, whereas the system of attractive spheres is. We already

mentioned that the Lees-Edwards boundary conditions cannot be used to simulate

systems in which particles are strongly aggregated by an attractive potential. The

structure is disrupted at the boundaries in the velocity gradient direction since the

Lees-Edwards boundary conditions force shearing motion at the boundaries. This

disruption may lead to string formation. Furthermore, in the system of attractive

spheres the particles may prefer string formation since the particles are approxi-

mately in the potential minimum of its leading and trailing particle in the string.

Hence there is a decrease in the free energy of the system of attractive spheres

with respect to the system of repulsive spheres.

From the data which are presented in this chapter we want to conclude that one

has to be careful when studying the behaviour of systems of attractive spheres

using Brownian dynamics on small (e.g. N = 256) systems. We have seen that at

relatively low Péclet numbers and at low temperatures, the particles tend to at-

tain a hexagonally ordered structure. The problems which arise when such struc-

tures occur have been the subject of chapter 4. Simulation results for moderately

or strongly attracting spheres may be in doubt due to the properties of the Lees-

Edwards boundary conditions discussed here and in chapter 4. But one can also

expect to meet difficulties at lower volume fractions than the ones we have used. If

the attraction is sufficiently strong, the particles will tend to form clusters. If a sin-

gle cluster fills the periodic simulation cell, the simulation results will be unreliable
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since the cluster interacts with itself through the periodic boundary conditions. We

therefore think that if one uses the Brownian dynamics method as presented in

this thesis, one should confine oneself to studying attractive particles which inter-

act through short to medium range potentials with a potential minimum which is

of order O(kT ). As we showed in chapter 4, one must carefully establish a range

of parameters such as the particle number and the Péclet number, in which the

simulations will not exhibit finite size effects.
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Conclusion and outlook

In this thesis the results of Brownian dynamics (BD) simulations of a model sys-

tem for colloidal dispersions in shear flow are reported. Since reports in the litera-

ture related to this subject all date from the last four years (1987-1991), the work

in this thesis is to some extent explorative. It is studied whether trends which

are observed in experimental data are reflected in the data obtained from simula-

tions. Care was taken to eliminate the possibility that some of the observed effects

were caused by specific details of the implemented simulation algorithm. The ap-

plication of BD simulations in microrheological modeling is relatively recent. Some

results on dispersions are already reported in literature, but some aspects as for

instance the calculation of the Brownian contribution to the stress tensor are not

fully treated in literature. In chapter 1 we described state of the art and in chapter

2 we discussed in detail the simulation technique and our model system. We dis-

cussed the calculation of the stress tensor, and proposed a method to evaluate the

Brownian contribution to the stress. The Brownian motion gives a significant con-

tribution to the stress through hydrodynamic interaction in the Stokesian dynam-

ics (SD) algorithm. We only calculate the direct contribution of Brownian motion to

the stress, and found this contribution to be negligible.

In chapter 3 we presented results of simulations of our model system in planar

Couette flow. For a range of Péclet numbers we calculated the shear rate dependent

viscosity and observed the shear induced ordering of the system. We argued that

at all Péclet numbers we studied, there are slow transitions between metastable

configurations, each having a slightly different viscosity. These metastable config-

urations can persist for a long time so too short production runs may give decep-

tional statistics since a too small part of the configuration space is sampled. For

medium range shear rates we find a layered structure, and for high shear rates we

find a hexagonal ordering of strings. The hexagonal ordering we observed appears

to be typical for non-equilibrium molecular dynamics and BD simulations of con-

centrated systems in shear flow. Up to now, this structure has not been observed in

SD simulations 26. We observed shear thinning behaviour, but did not find shear

thickening behaviour as observed in experiments on some colloidal dispersions.

In chapter 4 further results of a BD simulation of our model system are reported,

with special attention on studying the material functions in shear flow as a func-
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tion of system size and shear rate. The shear induced ordering is global in systems

containing up to N ≈ 500 particles. We showed that the properties of systems with

global ordering depend on the dimensions of the simulation cell. This means that

global shear induced ordering in small systems as reported in this thesis and in the

literature is an artefact. In both chapters 3 and 4 we drew attention to the fact that

the periodicity of the simulation box in the direction of flow might be an important

factor in the formation of the hexagonally ordered structure. We concluded that in

our model system subjected to planar Couette flow, for particle numbers less than

O(1, 000), the BD method can only be applied safely in a small range of shear rates,

roughly for Pe ≤ O(10). In chapter 4 we showed that the length of the simulation

cell in the direction of flow has a marked influence on the behaviour of the system.

It would be interesting to study this problem further by eliminating the supposed

influence of the periodicity of the simulation box in the direction of flow. This can

for instance be achieved by performing a BD simulation in which oscillatory shear

flow is applied to the system. An important difference with our simulations is that

in oscillatory flow the shear rate varies in time.

In chapter 5 we reported the rheological behaviour of our model system, using

parameter values for which we do not expect systematic artefacts. We observed

that trends in the results follow trends observed in experimental data for some

real dispersions. We compared our results with the predictions of a recent theory

of Dhont et al. 33 and Dhont 34 for the shear rate dependent viscosity in a system of

interacting Brownian particles. In this theory, hydrodynamic interactions between

particles are neglected, as is the case in our model system. This theory predicts that

there is a regime of Péclet numbers in which the viscosity varies linearly with
√
Pe,

and the trend is expected to hold also in dense systems. We indeed found this trend

in our simulation data for dense systems. From studying the shear rate dependent

structure factor S(k; γ̇) we concluded that the onset of layer formation can be seen

at Péclet numbers which are just beyond the regime of Péclet numbers in which

the viscosity varies linearly with the square root of the Péclet number. Since we

could not detect finite size effects at these low Péclet numbers, it is well possible

that the tendency of the particles to group into layers is indeed a physical property

of our model system, also if very large systems are considered. If the particles order

in strings, increased density within the layers will make particles tend to adopt a

hexagonal packing within the layers. Comparing results with a recent model of Van

den Brule28 for hydrodynamic interactions in hexagonally packed layers, shows

that our simulations are well away from the shear thickening regime expected

in dense dispersions of (nearly) hard spheres. A theory as that from Dhont may

provide an alternative for BD simulations of our model system if one is interested

in the material functions at low shear rates for systems at low concentrations. At

low shear rates, the BD method fails since the signal to noise ratio deteriorates.

One can numerically solve the shear rate dependent structure factor S(k, γ̇) from

the Fourier transformed two particle Smoluchowski equation in shear flow. Once
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S(k, γ̇) is known, one can calculate the stress tensor 30,33.

In chapter 6 we present an explorative study on the differences in the temperature

and shear rate dependent behaviour of systems of either repulsive or attractive

spheres. It is an introductory study how to apply the BD method to for instance a

weakly agglomerating system. We observed, as we expected, that there is only a

slight difference in behaviour between systems of repulsive spheres and systems

of weakly attractive spheres, and a significant difference in behaviour between the

systems of repulsive spheres and the systems of moderately attractive spheres.

Also in a system of attractive spheres we established the
√
Pe dependency of vis-

cosity in dense systems, as established in chapter 5. Furthermore, we observed that

differences in structure can be detected between systems of repulsive spheres and

systems of moderately attractive spheres. We argued that with the BD method,

one can only study systems in which the attractive potential depth is not larger

than O(kT ) in a system with N = 256 particles. A main reason for this is the fact

that the particles cluster in structures that interact with themselves through the

periodic boundary conditions.

In both chapters 4 and 6 we argued that the shear induced order we observed

might be an artefact, not only due to the finite size of the system, but also due to

the Lees-Edwards boundary conditions that force shearing motion at the bound-

aries in the velocity gradient direction, thereby imposing the externally applied

shear rate. The problem which arises is similar to the thermostatting problems

in non-equilibrium molecular dynamics simulation of sheared atomic systems as

indicated in chapter 1. In applying Lees-Edwards boundary conditions, one implic-

itly assumes that particles move with a velocity which is dictated by the externally

applied shear rate. It would be interesting to implement a self consistent variant of

Lees-Edwards boundary conditions, in which the images of the periodic simulation

cell do not move with a velocity which is dictated by the applied shear rate, but

instead move with a velocity which is dictated by the effective shear rate at which

the particles appear to move. Effectively, this would mean that one uses a constant

stress method instead of a constant strain method. One could then study whether

hexagonal ordering still evolves. One could also investigate whether a system of

attractive particles does actually flow at low shear rates, or whether it indeed has

a yield stress, a problem we encountered in chapter 6.

We want to conclude from our results as presented in this thesis that BD is a

useful method to study some aspects of the microscopic behaviour of concentrated

dispersions. Despite the fact that we neglected hydrodynamic interactions between

particles, we observed that there are various trends in our results which can also

be observed in real dense colloidal dispersions. An obvious extension to our model

would be the implementation of hydrodynamic interactions between particles, that

is, implementing a three dimensional variant of the SD method, which is currently

(id est around 1990) computationally prohibitive. In chapter 1 we reviewed some
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work already done in this field, but this work was concerned with the introduc-

tion of relatively simple descriptions of hydrodynamic interactions such as the Os-

een or Rotne-Prager tensorial descriptions. In the case of concentrated systems, it

is obvious to proceed with the implementation of lubrication forces88, which are

the dominant hydrodynamic interactions when particles are close to contact: a re-

pulsive pairwise interaction when two particles approach as interspacing liquid is

squeezed out, and an attractive interaction when two particles separate and liquid

flows into the gap. Lubrication forces have been used in theories which predict ηr
in an idealised structure, see chapter 1 and 5. We reported shear thinning but not

shear thickening, and the absence of the latter might be attributed to the neglect of

multi-particle hydrodynamic interactions; however in establishing the rheological

properties of our model system in chapter 5, we operated our simulation method

at Péclet number O(1), which following the argument of Van den Brule28 is in a

range of shear rates were shear thickening is not expected. Based on the work

presented in this thesis one can argue that in dense dispersions, when neglecting

hydrodynamic interactions, a repulsive potential at least leads to a structure that

is consistent with that of an actual dispersion of (nearly) hard spheres at low or

moderate shear rates, although in general no quantitative prediction of material

functions could be obtained due to the omission of the hydrodynamic contribution.

The situation is similar to that of simple fluids, where equilibrium structure can

be approximated by that of a hard sphere reference system in case the interaction

potential is steeply repulsive when particles approach each other closely.

94



A

Algorithms

95



ALGORITHMS

A.1 Van den Brule model solver

COMMENT Copyright J.M. van der Veer.

This Algol 68 code can be executed with Algol 68 Genie.

Literature:

B.H.A.A. van den Brule.

Proc. Xth International Congres on Rheology, Sydney.

Volume 2, 345 (1988)

COMMENT

PROC visco = (REAL ks # particle separation #,

ls # layer separation #) VOID:

(printf(($g(0, 4)x$, ls, ks));

PROC simpson = (REAL a, b, PROC (REAL) REAL f, REAL epsilon) REAL:

BEGIN

# Depending on error term, integrate recursively #

PROC adaptive = (REAL a, m, b, # and values # f a, f m, f b) REAL:

IF REAL l = (a + m) / 2, r = (m + b) / 2;

REAL f l = f(l), f r = f(r);

(b - a) *
ABS (f a - 4 * f l + 6 * f m - 4 * f r + f b) / 180 > epsilon

THEN adaptive (a, l, m, f a, f l, f m) +

adaptive (m, r, b, f m, f r, f b)

ELSE (b - a) * (f a + 4 * f l + 2 * f m + 4 * f r + f b) / 12

FI;

REAL m = (a + b) / 2;

adaptive (a, m, b, f(a), f(m), f(b))

END;

PROC f0 = (REAL x) REAL: x^2 + (ls / ks)^2 + 3/16,

f1 = (REAL x) REAL: sqrt(f0(x)),

f2 = (REAL x) REAL: f1(x) - 2 / ks,

f3 = (REAL x) REAL: f1(x) * ln (f1(x) / f2(x)),

f4 = (REAL x) REAL: f3(x) - 2 / ks,

f5 = (REAL x) REAL: f4(x) * (ls / ks -

ls * omega / (ks^2 * f1(x)) -

x^2 * omega / (ls * f1(x))),

nu = (REAL ks) REAL: pi * omega * sqrt(3) / (2 * ks * ls) *
(ks * ln (ks / (ks - 2)) - 2),

h1 = (REAL x) REAL: x^2 / (f2(x) * f0(x)),

h2 = (REAL x) REAL: x^2 * f4(x) / f0(x),

h3 = (REAL x) REAL: x^2 * f4(x) / f1(x);

# Omega follows from T<xy> = T<yx> #

REAL omega;

REAL min := 0, max := 2;

DO omega := (min + max) / 2;

IF 2 * pi / sqrt(3) * simpson(-0.75, 0.75, f5, 1e-7) < nu(ks)

THEN max

ELSE min
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FI := omega

UNTIL ABS (max - min) < 1e-6

OD;

# Calculate relative viscosity #

REAL eta r = nu(ks) + 2 * pi / sqrt(3) * simpson(-0.75, 0.75,

(REAL x) REAL:

3 * ls / ks^3 * h1(x) -

ls / ks * h2(x) +

omega / ls * h3(x),

1e-7);

printf(($2(g(0, 4)x)l$, omega, etar))

);

# Calculate a curve for a range of layer separations #

REAL phi = 0.49; # Volume fraction #

REAL ls := 1.50; # Initial layer separation #

WHILE REAL ks = sqrt(8 * pi / (ls * sqrt(27) * phi));

ks > 2

DO IF (ls/ks)^2 + 3/16 - 4/ks^2 > 0

THEN visco(ks, ls)

FI;

ls +:= 0.005

OD
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A.2 Thermodynamic data from WCA theory

COMMENT Copyright J.M. van der Veer.

This Algol 68 code can be executed with Algol 68 Genie.

Calculate equilibrium Lennard Jones thermodynamic data.

More accurate schemes exist but this suffices to calibrate

simulation software.

Literature:

J.D. Weeks, D. Chandler and H.C. Andersen,

J. Chem. Phys. 54(12) 5237

L. Verlet and J.J. Weis, Phys. Rev. A 5(2) 939

R.J. Baxter, J. Chem. Phys. 52 4559

J.W. Perram, Mol. Phys. 30 1505

COMMENT

INT resolt = 512, # Channels for rdf #

REAL r zero = 2^(1/6); # Radius where f=0 #

REAL r max = r zero; # Maximum radius for rdf #

OP R = (INT n) REAL: (n - 0.5) / resolt * r max,

N = (REAL r) INT: ENTIER (1 + resolt * r / r max);

OP U = (REAL r) REAL: (REAL r6 = r^-6; 4 * r6 * (r6 - 1)),

UR = (REAL r) REAL: (r < r zero | U r + 1 | 0),

F = (REAL r) REAL: (REAL r6 = r^-6; 24 * r6 / r * (2 * r6 - 1)),

G = (REAL r) REAL: rdf[(N r < resolt | N r | resolt)];

PROC simpson = (REAL a, b, PROC (REAL) REAL f, REAL epsilon) REAL:

BEGIN

# Depending on error term, integrate recursively #

PROC adaptive = (REAL a, m, b, # and values # f a, f m, f b) REAL:

IF REAL l = (a + m) / 2, r = (m + b) / 2;

REAL f l = f(l), f r = f(r);

(b - a) *
ABS (f a - 4 * f l + 6 * f m - 4 * f r + f b) / 180 > epsilon

THEN adaptive (a, l, m, f a, f l, f m) +

adaptive (m, r, b, f m, f r, f b)

ELSE (b - a) * (f a + 4 * f l + 2 * f m + 4 * f r + f b) / 12

FI;

REAL m = (a + b) / 2;

adaptive (a, m, b, f(a), f(m), f(b))

END;

REAL ref rho, ref d, [resolt] REAL rdf;

# Read parameters #

write(("rho = "));

REAL rho := read real;

write(("kT = "));

REAL beta := 1 / read real;

# Hard sphere radius is first order Baxter term #
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ref d := simpson(0.0, r max,

(REAL r) REAL: 1 - (r < 0.7 | 0 | exp(-beta * UR r)),

small real);

write(("d = ", fixed(ref d, 0, 6), newline));

ref rho := rho * ref d^3;

INT chns = 610, INT len = 100; REAL delta = 1 / len;

[1 .. 150] REAL t, [1 .. 2100] REAL table;

REAL eta, cx, a, a1, a2, a3, b1, b2, b3, b, c1, c2, c;

# Hard sphere RDF by Wiener-Hopf factorisation #

eta := pi / 6 * ref rho;

cx := 1 - eta;

a1 := 1 + 2 * eta;

a2 := eta * a1;

a3 := a1 / cx^2 - 3 * a2 * delta / cx^3;

a := 0.5 * delta * a3;

b1 := -3 * eta;

b2 := cx * eta - a2;

b3 := b1 - 3 * delta * b2 / cx + delta * a1;

b := 0.5 * delta * b3 / cx^2;

c1 := -b1;

c2 := 0.5 * delta * c1 / cx - 1;

c := 0.5 * delta * c2 / cx;

FOR m TO len

DO REAL r = (m - 0.5) * delta;

t[m] := c + b * r + a * r^2

OD;

# Fill table #

FOR n TO chns

DO REAL sum := 0;

FOR m TO len

DO sum +:= (n > m | table[n - m] | 0.5 - n + m - len) * t[m]

OD;

table[n] := 2 * pi * ref rho * sum

OD;

# Construct RDF #

FOR m TO UPB rdf

DO IF REAL r = R m / ref d; REAL z := r - 1.0;

z < 0

THEN rdf[m] := 0

ELIF z >= 30

THEN rdf[m] := 1

ELSE z := z / delta + 0.5;

INT n = (ENTIER z = 0 | 1 | ENTIER z);

REAL y = z - n;

REAL h low = table[n] / (len + n - 0.5),

h hig = table[n + 1] / (len + n + 0.5);

rdf[m] := 1 + h low * (1 - y) + h hig * y

FI

OD;

# Extend to the core with Percus-Yevick DCF #

a1 := -((1 + 2 * eta)^2) / (1 - eta)^4;

a2 := (1 + 0.5 * eta)^2 / (1 - eta)^4;
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FOR n TO UPB rdf

WHILE REAL r := R n / ref d;

r < 1

DO rdf[n] := -(a1 + 6 * eta * a2 * r + 0.5 * a1 * eta * r^3)

OD;

# Construct LJ rdf #

FOR n TO UPB rdf

DO REAL r = R n;

rdf[n] *:= (r < 0.7 | 0 | exp (-beta * (r < r max | UR r | 0)))

OD;

# Thermodynamic data #

write(("N = ", fixed(rho * simpson(0.7, r max,

(REAL r) REAL: 4 * pi * r^2 * G r,

1e-3), 0, 2), new line));

write(("E/N = ", fixed(rho / 2 * beta * simpson(0.7, r max,

(REAL r) REAL: 4 * pi * r^2 * G r * U r,

1e-3), 0, 2), new line));

write(("p = ", fixed(rho^2 / 6 * beta * simpson(0.7, r max,

(REAL r) REAL: 4 * pi * r^2 * G r * r * F r,

1e-3), 0, 2), new line)); # Virial equation #

open(standout, "rdf.dat", standout channel);

FOR i TO resolt

DO write((fixed (R i, -10, 6), ",",

fixed(G R i, -10, 6), new line))

OD
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C

Stellingen

1. Het is mogelijk om via een Monte Carlo of moleculaire dynamica simulatie de

chemische potentiaal van een harde bollen vloeistof nauwkeurig te bereke-

nen door de bulkvloeistof in thermodynamisch evenwicht te brengen met een

vloeistof welke zich in een oplopende opsluitpotentiaal bevindt. De chemische

potentiaal in het veld kan, als de dichtheid voldoende laag is, nauwkeurig

geschat worden met de Carnahan Starling relatie. De methode heeft als vo-

ordeel boven de zogenaamde "umbrella sampling" methode dat het systeem

niet in het niet-evenwichtsdeel van de faseruimte gebracht hoeft te worden.

R.D. Groot, J.M. van der Veer. Niet gepubliceerd.

2. Het al dan niet bestaan van een almachtige god is binnen de logica niet

bewijsbaar.

3. Op het gebied van de cryochemie zullen belangwekkende wetenschappelijke

resultaten geboekt kunnen worden. Het verdient derhalve aanbeveling om dit

gebied te stimuleren. Ter nagedachtenis aan dr. J.A. Cras.

4. De opstellen van Simon Vestdijk over de muziek van Gustav Mahler verschaf-

fen meer inzicht in de gedachtenwereld van Vestdijk dan in die van Mahler.

5. Het voorstel om zeewater op grond van haar rheologische eigenschappen als

biomateriaal aan te duiden is gerechtvaardigd.

I.R. Jenkinson. Rheological structure in bulk seawater. Proc. Third European

Rheology Conference, Edinburgh, 247 (1991).

6. De verwachting dat de mens ooit een machine zal construeren welke de Tur-

ing test zal doorstaan, berust op een illusie.
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7. Het heterometallische cluster Pt Au7[P(C6H5)3]8 (CN)2+2 bevat een tienvoudig

gecoördineerd platina-atoom.

J.M. van der Veer. Onderzoek aan heterometallische clusters op basis van

platina en goud. Laboratorium voor Anorganische Chemie, Katholieke Uni-

versiteit Nijmegen (1987).

8. Het vinden van een pangram dat drieenzestig maal een a, twee maal een b,

zes maal een c, zeven maal een d, honderdéén maal een e, vier maal een f,

tien maal een g, acht maal een h, vierentwintig maal een i, vier maal een

j, éénmaal een k, zevenentwintig maal een l, achtentwintig maal een m, ze-

senvijftig maal een n, vijf maal een o, twee maal een p, één maal een q, acht

maal een r, zes maal een s, vijfentwintig maal een t, twee maal een u veertien

maal een v, acht maal een w, één maal een x, éénmaal een y en acht maal

een z bevat, is nog niet zo eenvoudig.

De methode van Hofstadter werkt, maar om andere redenen dan hij ver-

moedt.

D.R. Hofstadter. On viral sentences and Self-Replicating structures en Math-

ematical chaos and Strange attractors, herdrukt in Metamagical Themas:

Questing for the Essence of Mind and Pattern, Bantam Books, Toronto (1985).

J.M. van der Veer

10 april 1992
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