mp-gamic.c
1 //! @file mp-gamic.c
2 //! @author J. Marcel van der Veer
3
4 //! @section Copyright
5 //!
6 //! This file is part of Algol68G - an Algol 68 compiler-interpreter.
7 //! Copyright 2001-2025 J. Marcel van der Veer [algol68g@xs4all.nl].
8
9 //! @section License
10 //!
11 //! This program is free software; you can redistribute it and/or modify it
12 //! under the terms of the GNU General Public License as published by the
13 //! Free Software Foundation; either version 3 of the License, or
14 //! (at your option) any later version.
15 //!
16 //! This program is distributed in the hope that it will be useful, but
17 //! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 //! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 //! more details. You should have received a copy of the GNU General Public
20 //! License along with this program. If not, see [http://www.gnu.org/licenses/].
21
22 //! @section Synopsis
23 //!
24 //! [LONG] LONG REAL generalised incomplete gamma function.
25
26 // Generalised incomplete gamma code in this file was downloaded from
27 //
28 // [http://helios.mi.parisdescartes.fr/~rabergel/]
29 //
30 // and adapted for Algol 68 Genie.
31 //
32 // Reference:
33 // Rémy Abergel, Lionel Moisan. Fast and accurate evaluation of a
34 // generalized incomplete gamma function. 2019. hal-01329669v2
35 //
36 // Original source code copyright and license:
37 //
38 // DELTAGAMMAINC Fast and Accurate Evaluation of a Generalized Incomplete Gamma
39 // Function. Copyright (C) 2016 Remy Abergel (remy.abergel AT gmail.com), Lionel
40 // Moisan (Lionel.Moisan AT parisdescartes.fr).
41 //
42 // This file is a part of the DELTAGAMMAINC software, dedicated to the
43 // computation of a generalized incomplete gammafunction. See the Companion paper
44 // for a complete description of the algorithm.
45 // ``Fast and accurate evaluation of a generalized incomplete gamma function''
46 // (Rémy Abergel, Lionel Moisan), preprint MAP5 nº2016-14, revision 1.
47 // This program is free software: you can redistribute it and/or modify it under
48 // the terms of the GNU General Public License as published by the Free Software
49 // Foundation, either version 3 of the License, or (at your option) any later
50 // version.
51 // This program is distributed in the hope that it will be useful, but WITHOUT
52 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
53 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
54 // details.
55 //
56 // You should have received a copy of the GNU General Public License along with
57 // this program. If not, see [http://www.gnu.org/licenses/].
58
59 // References
60 // R. Abergel and L. Moisan. 2016. Fast and accurate evaluation of a
61 // generalized incomplete gamma function, preprint MAP5 nº2016-14, revision 1
62 // Rémy Abergel, Lionel Moisan. Fast and accurate evaluation of a
63 // generalized incomplete gamma function. 2019. hal-01329669v2
64 // F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark
65 // (Eds.). 2010. NIST Handbook of Mathematical Functions. Cambridge University
66 // Press. (see online version at [http://dlmf.nist.gov/])
67 // W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
68 // B. P. Flannery. 1992. Numerical recipes in C: the art of scientific
69 // computing (2nd ed.).
70 // G. R. Pugh, 2004. An analysis of the Lanczos Gamma approximation (phd
71 // thesis)
72
73 #include "a68g.h"
74 #include "a68g-genie.h"
75 #include "a68g-mp.h"
76 #include "a68g-prelude.h"
77
78 // Processing time of Abergel's algorithms rises steeply with precision.
79 #define MAX_PRECISION (LONG_LONG_MP_DIGITS + LONG_MP_DIGITS)
80 #define GAM_DIGITS(digs) FUN_DIGITS (digs)
81
82 #define ITMAX(p, digits) lit_mp (p, 1000000, 0, digits);
83 #define DPMIN(p, digits) lit_mp (p, 1, 10 - MAX_MP_EXPONENT, digits)
84 #define EPS(p, digits) lit_mp (p, 1, 1 - digits, digits)
85 #define NITERMAX_ROMBERG 16 // Maximum allowed number of Romberg iterations
86 #define TOL_ROMBERG(p, digits) lit_mp (p, MP_RADIX / 10, -1, digits)
87 #define TOL_DIFF(p, digits) lit_mp (p, MP_RADIX / 5, -1, digits)
88
89 //! @brief compute G(p,x) in the domain x <= p >= 0 using a continued fraction
90
91 MP_T *G_cfrac_lower_mp (NODE_T *q, MP_T * Gcfrac, MP_T *p, MP_T *x, int digs)
92 {
93 if (IS_ZERO_MP (x)) {
94 SET_MP_ZERO (Gcfrac, digs);
95 return Gcfrac;
96 }
97 ADDR_T pop_sp = A68_SP;
98 MP_T *c = nil_mp (q, digs);
99 MP_T *d = nil_mp (q, digs);
100 MP_T *del = nil_mp (q, digs);
101 MP_T *f = nil_mp (q, digs);
102 // Evaluate the continued fraction using Modified Lentz's method. However,
103 // as detailed in the paper, perform manually the first pass (n=1), of the
104 // initial Modified Lentz's method.
105 // an = 1; bn = p; f = an / bn; c = an / DPMIN; d = 1 / bn; n = 2;
106 MP_T *an = lit_mp (q, 1, 0, digs);
107 MP_T *bn = nil_mp (q, digs);
108 MP_T *trm = nil_mp (q, digs);
109 MP_T *dpmin = DPMIN (q, digs);
110 MP_T *eps = EPS (q, digs);
111 MP_T *itmax = ITMAX (q, digs);
112 (void) move_mp (bn, p, digs);
113 (void) div_mp (q, f, an, bn, digs);
114 (void) div_mp (q, c, an, dpmin, digs);
115 (void) rec_mp (q, d, bn, digs);
116 MP_T *n = lit_mp (q, 2, 0, digs);
117 MP_T *k = nil_mp (q, digs);
118 MP_T *two = lit_mp (q, 2, 0, digs);
119 BOOL_T odd = A68_FALSE, cont = A68_TRUE;
120 while (cont) {
121 A68_BOOL ge, lt;
122 // k = n / 2;
123 (void) over_mp (q, k, n, two, digs);
124 // an = (n & 1 ? k : -(p - 1 + k)) * x;
125 if (odd) {
126 (void) move_mp (an, k, digs);
127 odd = A68_FALSE;
128 } else {
129 (void) minus_one_mp (q, trm, p, digs);
130 (void) add_mp (q, trm, trm, k, digs);
131 (void) minus_mp (q, an, trm, digs);
132 odd = A68_TRUE;
133 }
134 (void) mul_mp (q, an, an, x, digs);
135 // bn++;
136 (void) plus_one_mp (q, bn, bn, digs);
137 // d = an * d + bn;
138 (void) mul_mp (q, trm, an, d, digs);
139 (void) add_mp (q, d, trm, bn, digs);
140 // if (d == 0) { d = DPMIN; }
141 if (IS_ZERO_MP (d)) {
142 (void) move_mp (d, dpmin, digs);
143 }
144 // c = bn + an / c; mind possible overflow.
145 (void) div_mp (q, trm, an, c, digs);
146 (void) add_mp (q, c, bn, trm, digs);
147 // if (c == 0) { c = DPMIN; }
148 if (IS_ZERO_MP (c)) {
149 (void) move_mp (c, dpmin, digs);
150 }
151 // d = 1 / d;
152 (void) rec_mp (q, d, d, digs);
153 // del = d * c;
154 (void) mul_mp (q, del, d, c, digs);
155 // f *= del;
156 (void) mul_mp (q, f, f, del, digs);
157 // n++;
158 (void) plus_one_mp (q, n, n, digs);
159 // while ((fabs_double (del - 1) >= EPS) && (n < ITMAX));
160 (void) minus_one_mp (q, trm, del, digs);
161 (void) abs_mp (q, trm, trm, digs);
162 (void) ge_mp (q, &ge, trm, eps, digs);
163 (void) lt_mp (q, <, n, itmax, digs);
164 cont = VALUE (&ge) && VALUE (<);
165 }
166 (void) move_mp (Gcfrac, f, digs);
167 A68_SP = pop_sp;
168 return Gcfrac;
169 }
170
171 //! @brief compute the G-function in the domain x > p using a
172 // continued fraction.
173 // 0 < p < x, or x = +infinity
174
175 MP_T *G_cfrac_upper_mp (NODE_T *q, MP_T * Gcfrac, MP_T *p, MP_T *x, int digs)
176 {
177 ADDR_T pop_sp = A68_SP;
178 if (PLUS_INF_MP (x)) {
179 SET_MP_ZERO (Gcfrac, digs);
180 return Gcfrac;
181 }
182 MP_T *c = nil_mp (q, digs);
183 MP_T *d = nil_mp (q, digs);
184 MP_T *del = nil_mp (q, digs);
185 MP_T *f = nil_mp (q, digs);
186 MP_T *trm = nil_mp (q, digs);
187 MP_T *dpmin = DPMIN (q, digs);
188 MP_T *eps = EPS (q, digs);
189 MP_T *itmax = ITMAX (q, digs);
190 MP_T *n = lit_mp (q, 2, 0, digs);
191 MP_T *i = nil_mp (q, digs);
192 MP_T *two = lit_mp (q, 2, 0, digs);
193 // an = 1;
194 MP_T *an = lit_mp (q, 1, 0, digs);
195 // bn = x + 1 - p;
196 MP_T *bn = lit_mp (q, 1, 0, digs);
197 (void) add_mp (q, bn, x, bn, digs);
198 (void) sub_mp (q, bn, bn, p, digs);
199 BOOL_T t = !IS_ZERO_MP (bn);
200 // Evaluate the continued fraction using Modified Lentz's method. However,
201 // as detailed in the paper, perform manually the first pass (n=1), of the
202 // initial Modified Lentz's method.
203 if (t) {
204 // b{1} is non-zero
205 // f = an / bn;
206 (void) div_mp (q, f, an, bn, digs);
207 // c = an / DPMIN;
208 (void) div_mp (q, c, an, dpmin, digs);
209 // d = 1 / bn;
210 (void) rec_mp (q, d, bn, digs);
211 // n = 2;
212 set_mp (n, 2, 0, digs);
213 } else {
214 // b{1}=0 but b{2} is non-zero, compute Mcfrac = a{1}/f with f = a{2}/(b{2}+) a{3}/(b{3}+) ...
215 // an = -(1 - p);
216 (void) minus_one_mp (q, an, p, digs);
217 // bn = x + 3 - p;
218 (void) set_mp (bn, 3, 0, digs);
219 (void) add_mp (q, bn, x, bn, digs);
220 (void) sub_mp (q, bn, bn, p, digs);
221 // f = an / bn;
222 (void) div_mp (q, f, an, bn, digs);
223 // c = an / DPMIN;
224 (void) div_mp (q, c, an, dpmin, digs);
225 // d = 1 / bn;
226 (void) rec_mp (q, d, bn, digs);
227 // n = 3;
228 set_mp (n, 3, 0, digs);
229 }
230 // i = n - 1;
231 minus_one_mp (q, i, n, digs);
232 BOOL_T cont = A68_TRUE;
233 while (cont) {
234 A68_BOOL ge, lt;
235 // an = -i * (i - p);
236 (void) sub_mp (q, trm, p, i, digs);
237 (void) mul_mp (q, an, i, trm, digs);
238 // bn += 2;
239 (void) add_mp (q, bn, bn, two, digs);
240 // d = an * d + bn;
241 (void) mul_mp (q, trm, an, d, digs);
242 (void) add_mp (q, d, trm, bn, digs);
243 // if (d == 0) { d = DPMIN; }
244 if (IS_ZERO_MP (d)) {
245 (void) move_mp (d, dpmin, digs);
246 }
247 // c = bn + an / c; mind possible overflow.
248 (void) div_mp (q, trm, an, c, digs);
249 (void) add_mp (q, c, bn, trm, digs);
250 // if (c == 0) { c = DPMIN; }
251 if (IS_ZERO_MP (c)) {
252 (void) move_mp (c, dpmin, digs);
253 }
254 // d = 1 / d;
255 (void) rec_mp (q, d, d, digs);
256 // del = d * c;
257 (void) mul_mp (q, del, d, c, digs);
258 // f *= del;
259 (void) mul_mp (q, f, f, del, digs);
260 // i++;
261 (void) plus_one_mp (q, i, i, digs);
262 // n++;
263 (void) plus_one_mp (q, n, n, digs);
264 // while ((fabs_double (del - 1) >= EPS) && (n < ITMAX));
265 (void) minus_one_mp (q, trm, del, digs);
266 (void) abs_mp (q, trm, trm, digs);
267 (void) ge_mp (q, &ge, trm, eps, digs);
268 (void) lt_mp (q, <, n, itmax, digs);
269 cont = VALUE (&ge) && VALUE (<);
270 }
271 A68_SP = pop_sp;
272 // *Gcfrac = t ? f : 1 / f;
273 if (t) {
274 (void) move_mp (Gcfrac, f, digs);
275 } else {
276 (void) rec_mp (q, Gcfrac, f, digs);
277 }
278 return Gcfrac;
279 }
280
281 //! @brief compute the G-function in the domain x < 0 and |x| < max (1,p-1)
282 // using a recursive integration by parts relation.
283 // This function cannot be used when mu > 0.
284 // p > 0, integer; x < 0, |x| < max (1,p-1)
285
286 MP_T *G_ibp_mp (NODE_T *q, MP_T * Gibp, MP_T *p, MP_T *x, int digs)
287 {
288 ADDR_T pop_sp = A68_SP;
289 MP_T *trm = nil_mp (q, digs), *trn = nil_mp (q, digs);
290 MP_T *eps = EPS (q, digs);
291 // t = fabs_double (x);
292 MP_T *t = nil_mp (q, digs);
293 (void) abs_mp (q, x, x, digs);
294 // tt = 1 / (t * t);
295 MP_T *tt = nil_mp (q, digs);
296 (void) mul_mp (q, tt, t, t, digs);
297 (void) rec_mp (q, tt, tt, digs);
298 // odd = (INT_T) (p) % 2 != 0;
299 MP_T *two = lit_mp (q, 2, 0, digs);
300 (void) trunc_mp (q, trm, p, digs);
301 (void) mod_mp (q, trm, trm, two, digs);
302 BOOL_T odd = !IS_ZERO_MP (trm);
303 // c = 1 / t;
304 MP_T *c = nil_mp (q, digs);
305 (void) rec_mp (q, c, t, digs);
306 // d = (p - 1);
307 MP_T *d = nil_mp (q, digs);
308 (void) minus_one_mp (q, d, p, digs);
309 // s = c * (t - d);
310 MP_T *s = nil_mp (q, digs);
311 (void) sub_mp (q, trm, t, d, digs);
312 (void) mul_mp (q, s, c, trm, digs);
313 // l = 0;
314 MP_T *l = nil_mp (q, digs);
315 BOOL_T cont = A68_TRUE, stop = A68_TRUE;
316 MP_T *del = nil_mp (q, digs);
317 while (cont) {
318 // c *= d * (d - 1) * tt;
319 (void) minus_one_mp (q, trm, d, digs);
320 (void) mul_mp (q, trm, d, trm, digs);
321 (void) mul_mp (q, trm, trm, tt, digs);
322 (void) mul_mp (q, c, c, trm, digs);
323 // d -= 2;
324 (void) sub_mp (q, d, d, two, digs);
325 // del = c * (t - d);
326 (void) sub_mp (q, trm, t, d, digs);
327 (void) mul_mp (q, del, c, trm, digs);
328 // s += del;
329 (void) add_mp (q, s, s, del, digs);
330 // l++;
331 (void) plus_one_mp (q, l, l, digs);
332 // stop = fabs_double (del) < fabs_double (s) * EPS;
333 (void) abs_mp (q, trm, del, digs);
334 (void) abs_mp (q, trn, s, digs);
335 (void) mul_mp (q, trn, trn, eps, digs);
336 A68_BOOL lt;
337 (void) lt_mp (q, <, trm, trn, digs);
338 stop = VALUE (<);
339 //while ((l < floor_double ((p - 2) / 2)) && !stop);
340 (void) sub_mp (q, trm, p, two, digs);
341 (void) half_mp (q, trm, trm, digs);
342 (void) floor_mp (q, trm, trm, digs);
343 (void) lt_mp (q, <, l, trm, digs);
344 cont = VALUE (<) && !stop;
345 }
346 if (odd && !stop) {
347 // s += d * c / t;
348 (void) div_mp (q, trm, c, t, digs);
349 (void) mul_mp (q, trm, d, trm, digs);
350 (void) add_mp (q, s, s, trm, digs);
351 }
352 // Gibp = ((odd ? -1 : 1) * exp_double (-t + lgammaq (p) - (p - 1) * log_double (t)) + s) / t;
353 (void) ln_mp (q, trn, t, digs);
354 (void) minus_one_mp (q, trm, p, digs);
355 (void) mul_mp (q, trm, trm, trn, digs);
356 (void) lngamma_mp (q, trn, p, digs);
357 (void) sub_mp (q, trm, trn, trm, digs);
358 (void) sub_mp (q, trm, trm, t, digs);
359 (void) exp_mp (q, Gibp, trm, digs);
360 if (odd) {
361 (void) minus_mp (q, Gibp, Gibp, digs);
362 }
363 (void) add_mp (q, Gibp, Gibp, s, digs);
364 (void) div_mp (q, Gibp, Gibp, t, digs);
365 A68_SP = pop_sp;
366 return Gibp;
367 }
368
369 MP_T *plim_mp (NODE_T *p, MP_T *z, MP_T *x, int digs)
370 {
371 ADDR_T pop_sp = A68_SP;
372 if (MP_DIGIT (x, 1) > 0) {
373 (void) move_mp (z, x, digs);
374 } else {
375 MP_T *five = lit_mp (p, 5, 0, digs);
376 MP_T *nine = lit_mp (p, -9, 0, digs);
377 A68_BOOL ge;
378 (void) ge_mp (p, &ge, x, nine, digs);
379 if (VALUE (&ge)) {
380 SET_MP_ZERO (z, digs);
381 } else {
382 (void) minus_mp (p, z, x, digs);
383 (void) sqrt_mp (p, z, z, digs);
384 (void) mul_mp (p, z, five, z, digs);
385 (void) sub_mp (p, z, z, five, digs);
386 }
387 }
388 A68_SP = pop_sp;
389 return z;
390 }
391
392 //! @brief compute G : (p,x) --> R defined as follows
393 // if x <= p:
394 // G(p,x) = exp (x-p*ln (|x|)) * integral of s^{p-1} * exp (-sign (x)*s) ds from s = 0 to |x|
395 // otherwise:
396 // G(p,x) = exp (x-p*ln (|x|)) * integral of s^{p-1} * exp (-s) ds from s = x to infinity
397 // p > 0; x is a real number or +infinity.
398
399 void G_func_mp (NODE_T *q, MP_T * G, MP_T *p, MP_T *x, int digs)
400 {
401 ADDR_T pop_sp = A68_SP;
402 MP_T *pl = nil_mp (q, digs);
403 A68_BOOL ge;
404 (void) plim_mp (q, pl, x, digs);
405 (void) ge_mp (q, &ge, p, pl, digs);
406 if (VALUE (&ge)) {
407 G_cfrac_lower_mp (q, G, p, x, digs);
408 } else if (MP_DIGIT (x, 1) < 0) {
409 G_ibp_mp (q, G, p, x, digs);
410 } else {
411 G_cfrac_upper_mp (q, G, p, x, digs);
412 }
413 A68_SP = pop_sp;
414 }
415
416 //! @brief compute I_{x,y}^{mu,p} using a Romberg approximation.
417 // Compute rho and sigma so I_{x,y}^{mu,p} = rho * exp (sigma)
418
419 //! @brief iteration of the Romberg approximation of I_{x,y}^{mu,p}
420
421 #define ROMBERG_N (((NITERMAX_ROMBERG + 1) * (NITERMAX_ROMBERG + 2)) / 2)
422
423 static inline int IX (int n, int digs) {
424 int offset = n * SIZE_MP (digs);
425 return offset;
426 }
427
428 void mp_romberg_iterations
429 (NODE_T *q, MP_T *R, MP_T *sigma, INT_T n, MP_T *x, MP_T *y, MP_T *mu, MP_T *p, MP_T *h, MP_T *pow2, int digs)
430 {
431 MP_T *trm = nil_mp (q, digs), *trn = nil_mp (q, digs);
432 MP_T *sum = nil_mp (q, digs), *xx = nil_mp (q, digs);
433 INT_T adr0_prev = ((n - 1) * n) / 2;
434 INT_T adr0 = (n * (n + 1)) / 2;
435 MP_T *j = lit_mp (q, 1, 0, digs);
436 A68_BOOL le;
437 VALUE (&le) = A68_TRUE;
438 while (VALUE (&le)) {
439 // xx = x + ((y - x) * (2 * j - 1)) / (2 * pow2);
440 (void) add_mp (q, trm, j, j, digs);
441 (void) minus_one_mp (q, trm, trm, digs);
442 (void) sub_mp (q, trn, y, x, digs);
443 (void) mul_mp (q, trm, trm, trn, digs);
444 (void) div_mp (q, trm, trm, pow2, digs);
445 (void) half_mp (q, trm, trm, digs);
446 (void) add_mp (q, xx, x, trm, digs);
447 // sum += exp (-mu * xx + (p - 1) * a68_ln_real (xx) - sigma);
448 (void) ln_mp (q, trn, xx, digs);
449 (void) minus_one_mp (q, trm, p, digs);
450 (void) mul_mp (q, trm, trm, trn, digs);
451 (void) mul_mp (q, trn, mu, xx, digs);
452 (void) sub_mp (q, trm, trm, trn, digs);
453 (void) sub_mp (q, trm, trm, sigma, digs);
454 (void) exp_mp (q, trm, trm, digs);
455 (void) add_mp (q, sum, sum, trm, digs);
456 // j++;
457 (void) plus_one_mp (q, j, j, digs);
458 (void) le_mp (q, &le, j, pow2, digs);
459 }
460 // R[adr0] = 0.5 * R[adr0_prev] + h * sum;
461 (void) half_mp (q, trm, &R[IX (adr0_prev, digs)], digs);
462 (void) mul_mp (q, trn, h, sum, digs);
463 (void) add_mp (q, &R[IX (adr0, digs)], trm, trn, digs);
464 // REAL_T pow4 = 4;
465 MP_T *pow4 = lit_mp (q, 4, 0, digs);
466 for (int m = 1; m <= n; m++) {
467 // R[adr0 + m] = (pow4 * R[adr0 + (m - 1)] - R[adr0_prev + (m - 1)]) / (pow4 - 1);
468 (void) mul_mp (q, trm, pow4, &R[IX (adr0 + m - 1, digs)], digs);
469 (void) sub_mp (q, trm, trm, &R[IX (adr0_prev + m - 1, digs)], digs);
470 (void) minus_one_mp (q, trn, pow4, digs);
471 (void) div_mp (q, &R[IX (adr0 + m, digs)], trm, trn, digs);
472 // pow4 *= 4;
473 (void) add_mp (q, trm, pow4, pow4, digs);
474 (void) add_mp (q, pow4, trm, trm, digs);
475 }
476 }
477
478 void mp_romberg_estimate (NODE_T *q, MP_T * rho, MP_T * sigma, MP_T *x, MP_T *y, MP_T *mu, MP_T *p, int digs)
479 {
480 ADDR_T pop_sp = A68_SP;
481 MP_T *R = (MP_T *) get_heap_space (ROMBERG_N * SIZE_MP (digs));
482 // Initialization (n=1)
483 MP_T *trm = nil_mp (q, digs), *trn = nil_mp (q, digs);
484 // sigma = -mu * y + (p - 1) * ln (y);
485 (void) ln_mp (q, trn, y, digs);
486 (void) minus_one_mp (q, trm, p, digs);
487 (void) mul_mp (q, trm, trm, trn, digs);
488 (void) mul_mp (q, trn, mu, y, digs);
489 (void) sub_mp (q, sigma, trm, trn, digs);
490 // R[0] = 0.5 * (y - x) * (exp (-mu * x + (p - 1) * ln (x) - (*sigma)) + 1);
491 (void) ln_mp (q, trn, x, digs);
492 (void) minus_one_mp (q, trm, p, digs);
493 (void) mul_mp (q, trm, trm, trn, digs);
494 (void) mul_mp (q, trn, mu, x, digs);
495 (void) sub_mp (q, trm, trm, trn, digs);
496 (void) sub_mp (q, trm, trm, sigma, digs);
497 (void) exp_mp (q, trm, trm, digs);
498 (void) plus_one_mp (q, trm, trm, digs);
499 (void) sub_mp (q, trn, y, x, digs);
500 (void) mul_mp (q, trm, trm, trn, digs);
501 (void) half_mp (q, &R[IX (0, digs)], trm, digs);
502 // Loop for n > 0
503 MP_T *relerr = nil_mp (q, digs);
504 MP_T *relneeded = EPS (q, digs);
505 (void) div_mp (q, relneeded, relneeded, TOL_ROMBERG (q, digs), digs);
506 INT_T adr0 = 0;
507 INT_T n = 1;
508 // REAL_T h = (y - x) / 2; // n=1, h = (y-x)/2^n
509 MP_T *h = nil_mp (q, digs);
510 (void) sub_mp (q, h, y, x, digs);
511 (void) half_mp (q, h, h, digs);
512 // REAL_T pow2 = 1; // n=1; pow2 = 2^(n-1)
513 MP_T *pow2 = lit_mp (q, 1, 0, digs);
514 BOOL_T cont = A68_TRUE;
515 while (cont) {
516 // while (n <= NITERMAX_ROMBERG && relerr > relneeded);
517 // mp_romberg_iterations (R, *sigma, n, x, y, mu, p, h, pow2);
518 ADDR_T pop_sp_2 = A68_SP;
519 mp_romberg_iterations (q, R, sigma, n, x, y, mu, p, h, pow2, digs);
520 A68_SP = pop_sp_2;
521 // h /= 2;
522 (void) half_mp (q, h, h, digs);
523 // pow2 *= 2;
524 (void) add_mp (q, pow2, pow2, pow2, digs);
525 // adr0 = (n * (n + 1)) / 2;
526 adr0 = (n * (n + 1)) / 2;
527 // relerr = abs ((R[adr0 + n] - R[adr0 + n - 1]) / R[adr0 + n]);
528 (void) sub_mp (q, trm, &R[IX (adr0 + n, digs)], &R[IX (adr0 + n - 1, digs)], digs);
529 (void) div_mp (q, trm, trm, &R[IX (adr0 + n, digs)], digs);
530 (void) abs_mp (q, relerr, trm, digs);
531 // n++;
532 n++;
533 A68_BOOL gt;
534 (void) gt_mp (q, >, relerr, relneeded, digs);
535 cont = (n <= NITERMAX_ROMBERG) && VALUE (>);
536 }
537 // save Romberg estimate and free memory
538 // rho = R[adr0 + (n - 1)];
539 (void) move_mp (rho, &R[IX (adr0 + n - 1, digs)], digs);
540 a68_free (R);
541 A68_SP = pop_sp;
542 }
543
544 //! @brief compute generalized incomplete gamma function I_{x,y}^{mu,p}
545 // I_{x,y}^{mu,p} = integral from x to y of s^{p-1} * exp (-mu*s) ds
546 // This procedure computes (rho, sigma) described below.
547 // The approximated value of I_{x,y}^{mu,p} is I = rho * exp (sigma)
548 // mu is a real number non equal to zero
549 // (in general we take mu = 1 or -1 but any nonzero real number is allowed)
550 // x, y are two numbers with 0 <= x <= y <= +infinity,
551 // (the setting y=+infinity is allowed only when mu > 0)
552 // p is a real number > 0, p must be an integer when mu < 0.
553
554 void Dgamic_mp (NODE_T *q, MP_T * rho, MP_T * sigma, MP_T *x, MP_T *y, MP_T *mu, MP_T *p, int digs)
555 {
556 ADDR_T pop_sp = A68_SP;
557 // Particular cases
558 if (PLUS_INF_MP (x) && PLUS_INF_MP (y)) {
559 SET_MP_ZERO (rho, digs);
560 SET_MP_ZERO (sigma, digs);
561 MP_STATUS (sigma) = (UNSIGNED_T) MP_STATUS (sigma) | MINUS_INF_MASK;
562 A68_SP = pop_sp;
563 return;
564 } else if (same_mp (q, x, y, digs)) {
565 SET_MP_ZERO (rho, digs);
566 SET_MP_ZERO (sigma, digs);
567 MP_STATUS (sigma) = (UNSIGNED_T) MP_STATUS (sigma) | MINUS_INF_MASK;
568 A68_SP = pop_sp;
569 return;
570 }
571 if (IS_ZERO_MP (x) && PLUS_INF_MP (y)) {
572 set_mp (rho, 1, 0, digs);
573 MP_T *lgam = nil_mp (q, digs);
574 MP_T *lnmu = nil_mp (q, digs);
575 (void) lngamma_mp (q, lgam, p, digs);
576 (void) ln_mp (q, lnmu, mu, digs);
577 (void) mul_mp (q, lnmu, p, lnmu, digs);
578 (void) sub_mp (q, sigma, lgam, lnmu, digs);
579 return;
580 }
581 // Initialization
582 MP_T *mx = nil_mp (q, digs);
583 MP_T *nx = nil_mp (q, digs);
584 MP_T *my = nil_mp (q, digs);
585 MP_T *ny = nil_mp (q, digs);
586 MP_T *mux = nil_mp (q, digs);
587 MP_T *muy = nil_mp (q, digs);
588 // Initialization
589 // nx = (a68_isinf_real (x) ? a68_neginf_double_real () : -mu * x + p * ln (x));
590 if (PLUS_INF_MP (x)) {
591 SET_MP_ZERO (mx, digs);
592 MP_STATUS (nx) = (UNSIGNED_T) MP_STATUS (nx) | MINUS_INF_MASK;
593 } else {
594 (void) mul_mp (q, mux, mu, x, digs);
595 G_func_mp (q, mx, p, mux, digs);
596 (void) ln_mp (q, nx, x, digs);
597 (void) mul_mp (q, nx, p, nx, digs);
598 (void) sub_mp (q, nx, nx, mux, digs);
599 }
600 // ny = (a68_isinf_real (y) ? a68_neginf_double_real () : -mu * y + p * ln (y));
601 if (PLUS_INF_MP (y)) {
602 SET_MP_ZERO (my, digs);
603 MP_STATUS (ny) = (UNSIGNED_T) MP_STATUS (ny) | MINUS_INF_MASK;
604 } else {
605 (void) mul_mp (q, muy, mu, y, digs);
606 G_func_mp (q, my, p, muy, digs);
607 (void) ln_mp (q, ny, y, digs);
608 (void) mul_mp (q, ny, p, ny, digs);
609 (void) sub_mp (q, ny, ny, muy, digs);
610 }
611 // Compute (mA,nA) and (mB,nB) such as I_{x,y}^{mu,p} can be
612 // approximated by the difference A-B, where A >= B >= 0, A = mA*exp (nA) an
613 // B = mB*exp (nB). When the difference involves more than one digit loss due to
614 // cancellation errors, the integral I_{x,y}^{mu,p} is evaluated using the
615 // Romberg approximation method.
616 MP_T *mA = nil_mp (q, digs);
617 MP_T *mB = nil_mp (q, digs);
618 MP_T *nA = nil_mp (q, digs);
619 MP_T *nB = nil_mp (q, digs);
620 MP_T *trm = nil_mp (q, digs);
621 if (MP_DIGIT (mu, 1) < 0) {
622 (void) move_mp (mA, my, digs);
623 (void) move_mp (nA, ny, digs);
624 (void) move_mp (mB, mx, digs);
625 (void) move_mp (nB, nx, digs);
626 goto compute;
627 }
628 MP_T *pl = nil_mp (q, digs);
629 A68_BOOL lt;
630 if (PLUS_INF_MP (x)) {
631 VALUE (<) = A68_TRUE;
632 } else {
633 (void) mul_mp (q, mux, mu, x, digs);
634 (void) plim_mp (q, pl, mux, digs);
635 (void) lt_mp (q, <, p, pl, digs);
636 }
637 if (VALUE (<)) {
638 (void) move_mp (mA, mx, digs);
639 (void) move_mp (nA, nx, digs);
640 (void) move_mp (mB, my, digs);
641 (void) move_mp (nB, ny, digs);
642 goto compute;
643 }
644 if (PLUS_INF_MP (y)) {
645 VALUE (<) = A68_TRUE;
646 } else {
647 (void) mul_mp (q, muy, mu, y, digs);
648 (void) plim_mp (q, pl, muy, digs);
649 (void) lt_mp (q, <, p, pl, digs);
650 }
651 if (VALUE (<)) {
652 // mA = 1;
653 set_mp (mA, 1, 0, digs);
654 // nA = lgammaq (p) - p * log_double (mu);
655 MP_T *lgam = nil_mp (q, digs);
656 MP_T *lnmu = nil_mp (q, digs);
657 (void) lngamma_mp (q, lgam, p, digs);
658 (void) ln_mp (q, lnmu, mu, digs);
659 (void) mul_mp (q, lnmu, p, lnmu, digs);
660 (void) sub_mp (q, nA, lgam, lnmu, digs);
661 // nB = fmax (nx, ny);
662 A68_BOOL ge;
663 if (MINUS_INF_MP (ny)) {
664 VALUE (&ge) = A68_TRUE;
665 } else {
666 (void) ge_mp (q, &ge, nx, ny, digs);
667 }
668 if (VALUE (&ge)) {
669 (void) move_mp (nB, nx, digs);
670 } else {
671 (void) move_mp (nB, ny, digs);
672 }
673 // mB = mx * exp_double (nx - nB) + my * exp_double (ny - nB);
674 (void) sub_mp (q, trm, nx, nB, digs);
675 (void) exp_mp (q, trm, trm, digs);
676 (void) mul_mp (q, mB, mx, trm, digs);
677 if (! MINUS_INF_MP (ny)) {
678 (void) sub_mp (q, trm, ny, nB, digs);
679 (void) exp_mp (q, trm, trm, digs);
680 (void) mul_mp (q, trm, my, trm, digs);
681 (void) add_mp (q, mB, nB, trm, digs);
682 }
683 goto compute;
684 }
685 (void) move_mp (mA, my, digs);
686 (void) move_mp (nA, ny, digs);
687 (void) move_mp (mB, mx, digs);
688 (void) move_mp (nB, nx, digs);
689 compute:
690 // Compute (rho,sigma) such that rho*exp (sigma) = A-B
691 // 1. rho = mA - mB * exp_double (nB - nA);
692 (void) sub_mp (q, trm, nB, nA, digs);
693 (void) exp_mp (q, trm, trm, digs);
694 (void) mul_mp (q, trm, mB, trm, digs);
695 (void) sub_mp (q, rho, mA, trm, digs);
696 // 2. sigma = nA;
697 (void) move_mp (sigma, nA, digs);
698 // If the difference involved a significant loss of precision, compute Romberg estimate.
699 // if (!isinf_double (y) && ((*rho) / mA < TOL_DIFF)) {
700 (void) div_mp (q, trm, rho, mA, digs);
701 (void) lt_mp (q, <, trm, TOL_DIFF (q, digs), digs);
702 if (!PLUS_INF_MP (y) && VALUE (<)) {
703 mp_romberg_estimate (q, rho, sigma, x, y, mu, p, digs);
704 }
705 A68_SP = pop_sp;
706 }
707
708 void Dgamic_wrap_mp (NODE_T *q, MP_T * s, MP_T * rho, MP_T * sigma, MP_T *x, MP_T *y, MP_T *mu, MP_T *p, int digs)
709 {
710 ADDR_T pop_sp = A68_SP;
711 int gdigs = GAM_DIGITS (MAX_PRECISION);
712 errno = 0;
713 if (digs <= gdigs) {
714 gdigs = GAM_DIGITS (digs);
715 MP_T *rho_g = len_mp (q, rho, digs, gdigs);
716 MP_T *sigma_g = len_mp (q, sigma, digs, gdigs);
717 MP_T *x_g = len_mp (q, x, digs, gdigs);
718 MP_T *y_g = len_mp (q, y, digs, gdigs);
719 MP_T *mu_g = len_mp (q, mu, digs, gdigs);
720 MP_T *p_g = len_mp (q, p, digs, gdigs);
721 Dgamic_mp (q, rho_g, sigma_g, x_g, y_g, mu_g, p_g, gdigs);
722 if (IS_ZERO_MP (rho_g) || MINUS_INF_MP (sigma_g)) {
723 SET_MP_ZERO (s, digs);
724 } else {
725 (void) exp_mp (q, sigma_g, sigma_g, gdigs);
726 (void) mul_mp (q, rho_g, rho_g, sigma_g, gdigs);
727 (void) shorten_mp (q, s, digs, rho_g, gdigs);
728 }
729 } else {
730 diagnostic (A68_MATH_WARNING, q, WARNING_MATH_PRECISION, MOID (q), CALL, NULL);
731 MP_T *rho_g = cut_mp (q, rho, digs, gdigs);
732 MP_T *sigma_g = cut_mp (q, sigma, digs, gdigs);
733 MP_T *x_g = cut_mp (q, x, digs, gdigs);
734 MP_T *y_g = cut_mp (q, y, digs, gdigs);
735 MP_T *mu_g = cut_mp (q, mu, digs, gdigs);
736 MP_T *p_g = cut_mp (q, p, digs, gdigs);
737 Dgamic_mp (q, rho_g, sigma_g, x_g, y_g, mu_g, p_g, gdigs);
738 if (IS_ZERO_MP (rho_g) || MINUS_INF_MP (sigma_g)) {
739 SET_MP_ZERO (s, digs);
740 } else {
741 (void) exp_mp (q, sigma_g, sigma_g, gdigs);
742 (void) mul_mp (q, rho_g, rho_g, sigma_g, gdigs);
743 MP_T *tmp = nil_mp (q, MAX_PRECISION);
744 (void) shorten_mp (q, tmp, MAX_PRECISION, rho_g, gdigs);
745 (void) lengthen_mp (q, s, digs, tmp, MAX_PRECISION);
746 }
747 }
748 PRELUDE_ERROR (errno != 0, q, ERROR_MATH, MOID (q));
749 A68_SP = pop_sp;
750 }
751
752 //! @brief PROC long long gamma inc f = (LONG LONG REAL p, x) LONG LONG REAL
753
754 void genie_gamma_inc_f_mp (NODE_T *p)
755 {
756 int digs = DIGITS (MOID (p)), size = SIZE (MOID (p));
757 ADDR_T pop_sp = A68_SP;
758 MP_T *x = (MP_T *) STACK_OFFSET (-size);
759 MP_T *s = (MP_T *) STACK_OFFSET (-2 * size);
760 MP_T *mu = lit_mp (p, 1, 0, digs);
761 MP_T *y = nil_mp (p, digs);
762 MP_T *rho = nil_mp (p, digs);
763 MP_T *sigma = nil_mp (p, digs);
764 MP_STATUS (y) = (UNSIGNED_T) MP_STATUS (y) | PLUS_INF_MASK;
765 Dgamic_wrap_mp (p, s, rho, sigma, x, y, mu, s, digs);
766 A68_SP = pop_sp;
767 A68_SP -= size;
768 }
769
770 //! @brief PROC long long gamma inc g = (LONG LONG REAL p, x, y, mu) LONG LONG REAL
771
772 void genie_gamma_inc_g_mp (NODE_T *p)
773 {
774 int digs = DIGITS (MOID (p)), size = SIZE (MOID (p));
775 ADDR_T pop_sp = A68_SP;
776 MP_T *mu = (MP_T *) STACK_OFFSET (-size);
777 MP_T *y = (MP_T *) STACK_OFFSET (-2 * size);
778 MP_T *x = (MP_T *) STACK_OFFSET (-3 * size);
779 MP_T *s = (MP_T *) STACK_OFFSET (-4 * size);
780 MP_T *rho = nil_mp (p, digs);
781 MP_T *sigma = nil_mp (p, digs);
782 Dgamic_wrap_mp (p, s, rho, sigma, x, y, mu, s, digs);
783 A68_SP = pop_sp;
784 A68_SP -= 3 * size;
785 }
786
787 //! @brief PROC long long gamma inc gf = (LONG LONG REAL p, x, y, mu) LONG LONG REAL
788
789 void genie_gamma_inc_gf_mp (NODE_T *p)
790 {
791 // if x <= p: G(p,x) = exp (x-p*ln (|x|)) * integral over [0,|x|] of s^{p-1} * exp (-sign (x)*s) ds
792 // otherwise: G(p,x) = exp (x-p*ln (x)) * integral over [x,inf] of s^{p-1} * exp (-s) ds
793 int digs = DIGITS (MOID (p)), size = SIZE (MOID (p));
794 ADDR_T pop_sp = A68_SP;
795 MP_T *x = (MP_T *) STACK_OFFSET (-size);
796 MP_T *s = (MP_T *) STACK_OFFSET (-2 * size);
797 int gdigs = GAM_DIGITS (MAX_PRECISION);
798 errno = 0;
799 if (digs <= gdigs) {
800 gdigs = GAM_DIGITS (digs);
801 MP_T *x_g = len_mp (p, x, digs, gdigs);
802 MP_T *s_g = len_mp (p, s, digs, gdigs);
803 MP_T *G = nil_mp (p, gdigs);
804 G_func_mp (p, G, s_g, x_g, gdigs);
805 PRELUDE_ERROR (errno != 0, p, ERROR_MATH, MOID (p));
806 (void) shorten_mp (p, s, digs, G, gdigs);
807 } else {
808 diagnostic (A68_MATH_WARNING, p, WARNING_MATH_PRECISION, MOID (p), CALL, NULL);
809 MP_T *x_g = cut_mp (p, x, digs, gdigs);
810 MP_T *s_g = cut_mp (p, s, digs, gdigs);
811 MP_T *G = nil_mp (p, gdigs);
812 G_func_mp (p, G, s_g, x_g, gdigs);
813 PRELUDE_ERROR (errno != 0, p, ERROR_MATH, MOID (p));
814 MP_T *tmp = nil_mp (p, MAX_PRECISION);
815 (void) shorten_mp (p, tmp, MAX_PRECISION, G, gdigs);
816 (void) lengthen_mp (p, s, digs, tmp, MAX_PRECISION);
817 }
818 A68_SP = pop_sp - size;
819 }
820
821 //! @brief PROC long long gamma inc = (LONG LONG REAL p, x) LONG LONG REAL
822
823 void genie_gamma_inc_h_mp (NODE_T *p)
824 {
825 // #if defined (HAVE_GNU_MPFR) && (A68_LEVEL >= 3)
826 // genie_gamma_inc_mpfr (p);
827 // #else
828 // genie_gamma_inc_f_mp (p);
829 // #endif
830 genie_gamma_inc_f_mp (p);
831 }
© 2002-2025 J.M. van der Veer (jmvdveer@xs4all.nl)
|