double-math.c

     
   1  //! @file double-math.c
   2  //! @author J. Marcel van der Veer
   3  
   4  //! @section Copyright
   5  //!
   6  //! This file is part of Algol68G - an Algol 68 compiler-interpreter.
   7  //! Copyright 2001-2024 J. Marcel van der Veer [algol68g@xs4all.nl].
   8  
   9  //! @section License
  10  //!
  11  //! This program is free software; you can redistribute it and/or modify it 
  12  //! under the terms of the GNU General Public License as published by the 
  13  //! Free Software Foundation; either version 3 of the License, or 
  14  //! (at your option) any later version.
  15  //!
  16  //! This program is distributed in the hope that it will be useful, but 
  17  //! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
  18  //! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 
  19  //! more details. You should have received a copy of the GNU General Public 
  20  //! License along with this program. If not, see [http://www.gnu.org/licenses/].
  21  
  22  //! @section Synopsis
  23  //!
  24  //! LONG REAL, LONG COMPLEX routines. 
  25  
  26  // References:
  27  // M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,
  28  // Dover Publications, New York [1970]
  29  // https://en.wikipedia.org/wiki/Abramowitz_and_Stegun
  30  
  31  #include "a68g.h"
  32  #include "a68g-double.h"
  33  #include "a68g-numbers.h"
  34  
  35  #if (A68_LEVEL >= 3)
  36  
  37  // Infinity.
  38  
  39  DOUBLE_T a68_div_double (DOUBLE_T x, DOUBLE_T y)
  40  {
  41    return x / y;
  42  }
  43  
  44  DOUBLE_T a68_posinf_double (void)
  45  {
  46    return a68_div_double (+1.0, 0.0);
  47  }
  48  
  49  DOUBLE_T a68_neginf_double (void)
  50  {
  51    return a68_div_double (-1.0, 0.0);
  52  }
  53  
  54  //! @brief PROC (LONG REAL, LONG REAL) LONG REAL long hypot
  55  
  56  DOUBLE_T a68_hypot_double (DOUBLE_T x, DOUBLE_T y)
  57  {
  58  // Sqrt (x^2 + y^2) that does not needlessly overflow.
  59    DOUBLE_T xabs = ABSQ (x), yabs = ABSQ (y), min, max;
  60    if (xabs < yabs) {
  61      min = xabs;
  62      max = yabs;
  63    } else {
  64      min = yabs;
  65      max = xabs;
  66    }
  67    if (min == 0.0q) {
  68      return max;
  69    } else {
  70      DOUBLE_T u = min / max;
  71      return max * sqrt_double (1.0q + u * u);
  72    }
  73  }
  74  
  75  //! @brief PROC (LONG REAL, LONG REAL, LONG REAL) LONG REAL long beta inc
  76  
  77  DOUBLE_T a68_beta_inc_double (DOUBLE_T s, DOUBLE_T t, DOUBLE_T x)
  78  {
  79  // Incomplete beta function I{x}(s, t) by continued fraction,
  80  // see dlmf.nist.gov/8.17; Lentz's algorithm.
  81    if (x < 0.0q || x > 1.0q) {
  82      errno = ERANGE;
  83      return -1.0q;
  84    } else {
  85      const INT_T lim = 16 * sizeof (DOUBLE_T);
  86  // Rapid convergence when x <= (s+1)/(s+t+2) or else recursion.
  87      if (x > (s + 1.0q) / (s + t + 2.0q)) {
  88  // B{x}(s, t) = 1 - B{1-x}(t, s)
  89        return 1.0q - a68_beta_inc_double (s, t, 1.0q - x);
  90      }
  91  // Lentz's algorithm for continued fraction.
  92      DOUBLE_T W = 1.0q, F = 1.0q, c = 1.0q, d = 0.0q;
  93      BOOL_T cont = A68_TRUE;
  94      for (int N = 0, m = 0; cont && N < lim; N++) {
  95        DOUBLE_T T;
  96        if (N == 0) {
  97          T = 1.0q;
  98        } else if (N % 2 == 0) {
  99  // d{2m} := x m(t-m)/((s+2m-1)(s+2m))
 100          T = x * m * (t - m) / (s + 2.0q * m - 1.0q) / (s + 2.0q * m);
 101        } else {
 102  // d{2m+1} := -x (s+m)(s+t+m)/((s+2m+1)(s+2m))
 103          T = -x * (s + m) * (s + t + m) / (s + 2.0q * m + 1.0q) / (s + 2.0q * m);
 104          m++;
 105        }
 106        d = 1.0q / (T * d + 1.0q);
 107        c = T / c + 1.0q;
 108        F *= c * d;
 109        if (F == W) {
 110          cont = A68_FALSE;
 111        } else {
 112          W = F;
 113        }
 114      }
 115  // I{x}(s,t)=x^s(1-x)^t / s / B(s,t) F
 116      DOUBLE_T beta = exp_double (lgamma_double (s) + lgamma_double (t) - lgamma_double (s + t));
 117      return pow_double (x, s) * pow_double (1.0q - x, t) / s / beta * (F - 1.0q);
 118    }
 119  }
 120  
 121  //! @brief PROC (LONG REAL) LONG REAL long csc
 122  
 123  DOUBLE_T a68_csc_double (DOUBLE_T x)
 124  {
 125    DOUBLE_T z = sin_double (x);
 126    A68_OVERFLOW (z == 0.0q);
 127    return 1.0q / z;
 128  }
 129  
 130  //! @brief PROC (LONG REAL) LONG REAL long acsc
 131  
 132  DOUBLE_T a68_acsc_double (DOUBLE_T x)
 133  {
 134    A68_OVERFLOW (x == 0.0q);
 135    return asin_double (1.0q / x);
 136  }
 137  
 138  //! @brief PROC (LONG REAL) LONG REAL long sec
 139  
 140  DOUBLE_T a68_sec_double (DOUBLE_T x)
 141  {
 142    DOUBLE_T z = cos_double (x);
 143    A68_OVERFLOW (z == 0.0q);
 144    return 1.0q / z;
 145  }
 146  
 147  //! @brief PROC (LONG REAL) LONG REAL long asec
 148  
 149  DOUBLE_T a68_asec_double (DOUBLE_T x)
 150  {
 151    A68_OVERFLOW (x == 0.0q);
 152    return acos_double (1.0q / x);
 153  }
 154  
 155  //! @brief PROC (LONG REAL) LONG REAL long cot
 156  
 157  DOUBLE_T a68_cot_double (DOUBLE_T x)
 158  {
 159    DOUBLE_T z = sin_double (x);
 160    A68_OVERFLOW (z == 0.0q);
 161    return cos_double (x) / z;
 162  }
 163  
 164  //! @brief PROC (LONG REAL) LONG REAL long acot
 165  
 166  DOUBLE_T a68_acot_double (DOUBLE_T x)
 167  {
 168    A68_OVERFLOW (x == 0.0q);
 169    return atan_double (1 / x);
 170  }
 171  
 172  //! brief PROC (LONG REAL) LONG REAL long cas
 173  
 174  DOUBLE_T a68_cas_double (DOUBLE_T x)
 175  {
 176  // Hartley kernel, which Hartley named cas (cosine and sine).
 177    return cos_double (x) + sin_double (x);
 178  }
 179  
 180  //! brief PROC (LONG REAL) LONG REAL long sindg
 181  
 182  DOUBLE_T a68_sindg_double (DOUBLE_T x)
 183  {
 184    return sin_double (x * CONST_PI_OVER_180_Q);
 185  }
 186  
 187  //! brief PROC (LONG REAL) LONG REAL long cosdg
 188  
 189  DOUBLE_T a68_cosdg_double (DOUBLE_T x)
 190  {
 191    return cos_double (x * CONST_PI_OVER_180_Q);
 192  }
 193  
 194  //! brief PROC (LONG REAL) LONG REAL long tandg
 195  
 196  DOUBLE_T a68_tandg_double (DOUBLE_T x)
 197  {
 198    return tan_double (x * CONST_PI_OVER_180_Q);
 199  }
 200  
 201  //! brief PROC (LONG REAL) LONG REAL long asindg
 202  
 203  DOUBLE_T a68_asindg_double (DOUBLE_T x)
 204  {
 205    return asin_double (x) * CONST_180_OVER_PI_Q;
 206  }
 207  
 208  //! brief PROC (LONG REAL) LONG REAL long acosdg
 209  
 210  DOUBLE_T a68_acosdg_double (DOUBLE_T x)
 211  {
 212    return acos_double (x) * CONST_180_OVER_PI_Q;
 213  }
 214  
 215  //! brief PROC (LONG REAL) LONG REAL long atandg
 216  
 217  DOUBLE_T a68_atandg_double (DOUBLE_T x)
 218  {
 219    return atan_double (x) * CONST_180_OVER_PI_Q;
 220  }
 221  //! @brief PROC (LONG REAL) LONG REAL long cscdg
 222  
 223  DOUBLE_T a68_cscdg_double (DOUBLE_T x)
 224  {
 225    DOUBLE_T z = a68_sindg_double (x);
 226    A68_OVERFLOW (z == 0.0q);
 227    return 1.0q / z;
 228  }
 229  
 230  //! @brief PROC (LONG REAL) LONG REAL long acscdg
 231  
 232  DOUBLE_T a68_acscdg_double (DOUBLE_T x)
 233  {
 234    A68_OVERFLOW (x == 0.0q);
 235    return a68_asindg_double (1.0q / x);
 236  }
 237  
 238  //! @brief PROC (LONG REAL) LONG REAL long secdg
 239  
 240  DOUBLE_T a68_secdg_double (DOUBLE_T x)
 241  {
 242    DOUBLE_T z = a68_cosdg_double (x);
 243    A68_OVERFLOW (z == 0.0q);
 244    return 1.0q / z;
 245  }
 246  
 247  //! @brief PROC (LONG REAL) LONG REAL long asecdg
 248  
 249  DOUBLE_T a68_asecdg_double (DOUBLE_T x)
 250  {
 251    A68_OVERFLOW (x == 0.0q);
 252    return a68_acosdg_double (1.0q / x);
 253  }
 254  
 255  // PROC (LONG REAL) LONG REAL long cotdg
 256  
 257  DOUBLE_T a68_cotdg_double (DOUBLE_T x)
 258  {
 259    DOUBLE_T z = a68_sindg_double (x);
 260    A68_OVERFLOW (z == 0);
 261    return a68_cosdg_double (x) / z;
 262  }
 263  
 264  // PROC (LONG REAL) LONG REAL long acotdg
 265  
 266  DOUBLE_T a68_acotdg_double (DOUBLE_T z)
 267  {
 268    A68_OVERFLOW (z == 0);
 269    return a68_atandg_double (1 / z);
 270  }
 271  
 272  // @brief PROC (LONG REAL) LONG REAL long sinpi
 273  
 274  DOUBLE_T a68_sinpi_double (DOUBLE_T x)
 275  {
 276    x = fmod_double (x, 2.0q);
 277    if (x <= -1.0q) {
 278      x += 2.0q;
 279    } else if (x > 1.0q) {
 280      x -= 2.0q;
 281    }
 282  // x in <-1, 1].
 283    if (x == 0.0q || x == 1.0q) {
 284      return 0.0q;
 285    } else if (x == 0.5q) {
 286      return 1.0q;
 287    }
 288    if (x == -0.5q) {
 289      return -1.0q;
 290    } else {
 291      return sin_double (CONST_PI_Q * x);
 292    }
 293  }
 294  
 295  // @brief PROC (LONG REAL) LONG REAL long cospi
 296  
 297  DOUBLE_T a68_cospi_double (DOUBLE_T x)
 298  {
 299    x = fmod_double (fabs_double (x), 2.0q);
 300  // x in [0, 2>.
 301    if (x == 0.5q || x == 1.5q) {
 302      return 0.0q;
 303    } else if (x == 0.0q) {
 304      return 1.0q;
 305    } else if (x == 1.0q) {
 306      return -1.0q;
 307    } else {
 308      return cos_double (CONST_PI_Q * x);
 309    }
 310  }
 311  
 312  // @brief PROC (LONG REAL) LONG REAL long tanpi
 313  
 314  DOUBLE_T a68_tanpi_double (DOUBLE_T x)
 315  {
 316    x = fmod_double (x, 1.0q);
 317    if (x <= -0.5q) {
 318      x += 1.0q;
 319    } else if (x > 0.5q) {
 320      x -= 1.0q;
 321    }
 322  // x in <-1/2, 1/2].
 323    A68_OVERFLOW (x == 0.5q);
 324    if (x == -0.25q) {
 325      return -1.0q;
 326    } else if (x == 0) {
 327      return 0.0q;
 328    } else if (x == 0.25q) {
 329      return 1.0q;
 330    } else {
 331      return a68_sinpi_double (x) / a68_cospi_double (x);
 332    }
 333  }
 334  
 335  // @brief PROC (LONG REAL) LONG REAL long cotpi
 336  
 337  DOUBLE_T a68_cotpi_double (DOUBLE_T x)
 338  {
 339    x = fmod_double (x, 1.0q);
 340    if (x <= -0.5q) {
 341      x += 1.0q;
 342    } else if (x > 0.5q) {
 343      x -= 1.0q;
 344    }
 345  // x in <-1/2, 1/2].
 346    A68_OVERFLOW (x == 0.0q);
 347    if (x == -0.25q) {
 348      return -1.0q;
 349    } else if (x == 0.25q) {
 350      return 1.0q;
 351    } else if (x == 0.5q) {
 352      return 0.0q;
 353    } else {
 354      return a68_cospi_double (x) / a68_sinpi_double (x);
 355    }
 356  }
 357  
 358  #endif
     


© 2002-2024 J.M. van der Veer (jmvdveer@xs4all.nl)