rts-int128.c

     
   1  //! @file rts-int128.c
   2  //! @author J. Marcel van der Veer
   3  
   4  //! @section Copyright
   5  //!
   6  //! This file is part of Algol68G - an Algol 68 compiler-interpreter.
   7  //! Copyright 2001-2024 J. Marcel van der Veer [algol68g@xs4all.nl].
   8  
   9  //! @section License
  10  //!
  11  //! This program is free software; you can redistribute it and/or modify it 
  12  //! under the terms of the GNU General Public License as published by the 
  13  //! Free Software Foundation; either version 3 of the License, or 
  14  //! (at your option) any later version.
  15  //!
  16  //! This program is distributed in the hope that it will be useful, but 
  17  //! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
  18  //! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 
  19  //! more details. You should have received a copy of the GNU General Public 
  20  //! License along with this program. If not, see [http://www.gnu.org/licenses/].
  21  
  22  //! @section Synopsis
  23  //!
  24  //! 128-bit INT support.
  25  
  26  // A68G keeps this code since some (for instance 32-bit) platforms do not
  27  // natively support a 128-bit int type.
  28  
  29  #include "a68g.h"
  30  
  31  #if (A68_LEVEL >= 3)
  32  
  33  #include "a68g-prelude.h"
  34  #include "a68g-genie.h"
  35  #include "a68g-double.h"
  36  
  37  void m64to128 (DOUBLE_NUM_T * w, UNSIGNED_T u, UNSIGNED_T v)
  38  {
  39  // Knuth Algorithm M, multiprecision multiplication of natural numbers.
  40  #define M (0xffffffff)
  41  #define N 32
  42    UNSIGNED_T hu = u >> N, lu = u & M, hv = v >> N, lv = v & M;
  43    UNSIGNED_T t = lu * lv;
  44    UNSIGNED_T w3 = t & M, k = t >> N;
  45    t = hu * lv + k;
  46    UNSIGNED_T w2 = t & M, w1 = t >> N;
  47    t = lu * hv + w2;
  48    k = t >> N;
  49    HW (*w) = hu * hv + w1 + k;
  50    LW (*w) = (t << N) + w3;
  51  #undef M
  52  #undef N
  53  }
  54  
  55  void m128to128 (NODE_T * p, MOID_T * m, DOUBLE_NUM_T * w, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
  56  {
  57  // Knuth Algorithm M, multiprecision multiplication of natural numbers.
  58    UNSIGNED_T hu = HW (u), lu = LW (u), hv = HW (v), lv = LW (v);
  59    DOUBLE_NUM_T k, t, h, w1, w2, w3;
  60    if (lu == 0 || lv == 0) {
  61      set_lw (t, 0);
  62    } else {
  63      m64to128 (&t, lu, lv);
  64    }
  65    set_lw (w3, LW (t));
  66    set_lw (k, HW (t));
  67    if (hu == 0 || lv == 0) {
  68      set_lw (t, 0);
  69    } else {
  70      m64to128 (&t, hu, lv);
  71    }
  72    add_double (p, m, t, t, k);
  73    set_lw (w2, LW (t));
  74    set_lw (w1, HW (t));
  75    if (lu == 0 || hv == 0) {
  76      set_lw (t, 0);
  77    } else {
  78      m64to128 (&t, lu, hv);
  79    }
  80    add_double (p, m, t, t, w2);
  81    set_lw (k, HW (t));
  82    if (hu == 0 || hv == 0) {
  83      set_lw (h, 0);
  84    } else {
  85      m64to128 (&h, hu, hv);
  86    }
  87    add_double (p, m, h, h, w1);
  88    add_double (p, m, h, h, k);
  89    set_hw (*w, LW (t));
  90    add_double (p, m, *w, *w, w3);
  91    PRELUDE_ERROR (MODCHK (p, m, HW (h) != 0 || LW (h) != 0), p, ERROR_MATH, M_LONG_INT)
  92  }
  93  
  94  DOUBLE_NUM_T double_udiv (NODE_T * p, MOID_T * m, DOUBLE_NUM_T n, DOUBLE_NUM_T d, int mode)
  95  {
  96  // A bit naive long division.
  97    DOUBLE_NUM_T q, r;
  98  // Special cases.
  99    PRELUDE_ERROR (IS_ZERO (d), p, ERROR_DIVISION_BY_ZERO, M_LONG_INT);
 100    if (IS_ZERO (n)) {
 101      if (mode == 0) {
 102        set_lw (q, 0);
 103        return q;
 104      } else {
 105        set_lw (r, 0);
 106        return r;
 107      }
 108    }
 109  // Assuming random n and d, circa half of the divisions is trivial:
 110  // n / d = 1 when n = d, n / d = 0 when n < d.
 111    if (EQ (n, d)) {
 112      if (mode == 0) {
 113        set_lw (q, 1);
 114        return q;
 115      } else {
 116        set_lw (r, 0);
 117        return r;
 118      }
 119    } else if (GT (d, n)) {
 120      if (mode == 0) {
 121        set_lw (q, 0);
 122        return q;
 123      } else {
 124        return n;
 125      }
 126    }
 127  // Halfword divide.
 128    if (HW (n) == 0 && HW (d) == 0) {
 129      if (mode == 0) {
 130        set_lw (q, LW (n) / LW (d));
 131        return q;
 132      } else {
 133        set_lw (r, LW (n) % LW (d));
 134        return r;
 135      }
 136    }
 137  // We now know that n and d both have > 64 bits.
 138  // Full divide.
 139    set_lw (q, 0);
 140    set_lw (r, 0);
 141    for (int k = 128; k > 0; k--) {
 142      UNSIGNED_T carry = (LW (q) & D_SIGN) ? 0x1 : 0x0;
 143      LW (q) <<= 1;
 144      HW (q) = (HW (q) << 1) | carry;
 145  // Left-shift r
 146      carry = (LW (r) & D_SIGN) ? 0x1 : 0x0;
 147      LW (r) <<= 1;
 148      HW (r) = (HW (r) << 1) | carry;
 149  // r[0] = n[k]
 150      if (HW (n) & D_SIGN) {
 151        LW (r) |= 0x1;
 152      }
 153      carry = (LW (n) & D_SIGN) ? 0x1 : 0x0;
 154      LW (n) <<= 1;
 155      HW (n) = (HW (n) << 1) | carry;
 156  // if r >= d
 157      if (GE (r, d)) {
 158  // r = r - d
 159        sub_double (p, m, r, r, d);
 160  // q[k] = 1
 161        LW (q) |= 0x1;
 162      }
 163    }
 164    if (mode == 0) {
 165      return q;
 166    } else {
 167      return r;
 168    }
 169  }
 170  
 171  DOUBLE_NUM_T double_uadd (NODE_T * p, MOID_T * m, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
 172  {
 173    DOUBLE_NUM_T w;
 174    (void) p;
 175    add_double (p, m, w, u, v);
 176    return w;
 177  }
 178  
 179  DOUBLE_NUM_T double_usub (NODE_T * p, MOID_T * m, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
 180  {
 181    DOUBLE_NUM_T w;
 182    (void) p;
 183    sub_double (p, m, w, u, v);
 184    return w;
 185  }
 186  
 187  DOUBLE_NUM_T double_umul (NODE_T * p, MOID_T * m, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
 188  {
 189    DOUBLE_NUM_T w;
 190    m128to128 (p, m, &w, u, v);
 191    return w;
 192  }
 193  
 194  // Signed integer.
 195  
 196  DOUBLE_NUM_T double_sadd (NODE_T * p, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
 197  {
 198    int neg_u = D_NEG (u), neg_v = D_NEG (v);
 199    if (neg_u) {
 200      u = neg_double_int (u);
 201    }
 202    if (neg_v) {
 203      v = neg_double_int (v);
 204    }
 205    DOUBLE_NUM_T w;
 206    set_lw (w, 0);
 207    if (!neg_u && !neg_v) {
 208      w = double_uadd (p, M_LONG_INT, u, v);
 209      PRELUDE_ERROR (D_NEG (w), p, ERROR_MATH, M_LONG_INT);
 210    } else if (neg_u && neg_v) {
 211      w = neg_double_int (double_sadd (p, u, v));
 212    } else if (neg_u) {
 213      w = double_ssub (p, v, u);
 214    } else if (neg_v) {
 215      w = double_ssub (p, u, v);
 216    }
 217    return w;
 218  }
 219  
 220  DOUBLE_NUM_T double_ssub (NODE_T * p, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
 221  {
 222    int neg_u = D_NEG (u), neg_v = D_NEG (v);
 223    if (neg_u) {
 224      u = neg_double_int (u);
 225    }
 226    if (neg_v) {
 227      v = neg_double_int (v);
 228    }
 229    DOUBLE_NUM_T w;
 230    set_lw (w, 0);
 231    if (!neg_u && !neg_v) {
 232      if (D_LT (u, v)) {
 233        w = neg_double_int (double_usub (p, M_LONG_INT, v, u));
 234      } else {
 235        w = double_usub (p, M_LONG_INT, u, v);
 236      }
 237    } else if (neg_u && neg_v) {
 238      w = double_ssub (p, v, u);
 239    } else if (neg_u) {
 240      w = neg_double_int (double_sadd (p, u, v));
 241    } else if (neg_v) {
 242      w = double_sadd (p, u, v);
 243    }
 244    return w;
 245  }
 246  
 247  DOUBLE_NUM_T double_smul (NODE_T * p, DOUBLE_NUM_T u, DOUBLE_NUM_T v)
 248  {
 249    int neg_u = D_NEG (u), neg_v = D_NEG (v);
 250    DOUBLE_NUM_T w;
 251    if (neg_u) {
 252      u = neg_double_int (u);
 253    }
 254    if (neg_v) {
 255      v = neg_double_int (v);
 256    }
 257    w = double_umul (p, M_LONG_INT, u, v);
 258    if (neg_u != neg_v) {
 259      w = neg_double_int (w);
 260    }
 261    return w;
 262  }
 263  
 264  DOUBLE_NUM_T double_sdiv (NODE_T * p, DOUBLE_NUM_T u, DOUBLE_NUM_T v, int mode)
 265  {
 266    int neg_u = D_NEG (u), neg_v = D_NEG (v);
 267    if (neg_u) {
 268      u = neg_double_int (u);
 269    }
 270    if (neg_v) {
 271      v = neg_double_int (v);
 272    }
 273    DOUBLE_NUM_T w = double_udiv (p, M_LONG_INT, u, v, mode);
 274    if (mode == 0 && neg_u != neg_v) {
 275      w = neg_double_int (w);
 276    } else if (mode == 1 && D_NEG (w)) {
 277      w = double_sadd (p, w, v);
 278    }
 279    return w;
 280  }
 281  
 282  #endif
     


© 2002-2024 J.M. van der Veer (jmvdveer@xs4all.nl)